CURRICULUM VITAE 1st September 2021

Santiago Schnell

Professor of Biological Sciences Professor of Applied and Computational Mathematics and Statistics

William K. Warren Foundation Dean of the College of Science

The University of Notre Dame	Inquires:	+1-574-631-6456
College of Science	Fax:	+1-574-631-8149
215 Jordan Hall	E-mail:	santiago.schnell@nd.edu
Notre Dame, IN 46556	Web: www	v.med.umich.edu/schnell-lab/
USA		

Education

10/1991-12/1996	License in Biology, Universidad Simón Bolívar, Venezuela (Awarded: 24 Jan
	1997). Dissertation: Descripción Teórica de la Reacción en Cadena de la
	Polimerasa. Advisor: Prof. Claudio Mendoza
10/1998-07/2002	Doctor of Philosophy (Mathematics), University of Oxford, UK (Awarded: 8
	Nov 2003). Dissertation: On the Quasi-Steady-State Approximation: Enzyme-
	substrate reactions as a case study. Advisor: Prof. Philip K. Maini, FRS

Postdoctoral Training

10/2001-07/2004	Junior Research Fellow, Christ Church, University of Oxford, UK. Mentor: Prof.
	Philip K. Maini, FRS
12/2002-07/2004	Ordinary Research Fellow of the Wellcome Trust, Centre for Mathematical Biology, Mathematical Institute, University of Oxford, UK, Mentors: Prof. Philip K. Maini, FRS and Prof. Claudio Stern, FRS

Academic Appointments

University of Oxford, Oxford, England, UK

10/2000-07/2001	Retained Lecturer in Mathematics, Pembroke College
10/2001-12/2001	College Lecturer in Applied Mathematics, Brasenose College
10/2001-07/2004	Junior Research Fellow in Mathematical Biology, Christ Church
12/2002-07/2004	Research Fellow in Mathematical Biology, Mathematical Institute

Indiana University, Bloomington, Indiana, USA

06/2004-07/2004	Visiting Assistant Professorship of Informatics, Luddy School of Informatics,
	Computing, and Engineering
08/2004-05/2008	Assistant Professor of Informatics, Luddy School of Informatics, Computing, and
	Engineering
01/2005-05/2008	Adjunct Assistant Professor of Physics, Department of Physics
08/2006-05/2008	Affiliated Faculty, Latino Studies

University of Michigan, Ann Arbor, Michigan, USA

05/2008-08/2015	Associate Professor of Molecular & Integrative Physiology
05/2008-08/2021	Faculty, Center for Computational Medicine & Biology
05/2008-08/2021	William K. Brehm Investigator, Michigan Diabetes Center
09/2008-08/2021	Faculty, Center for Cell Plasticity and Organ Design

01/2012-08/2021 Faculty, Cellular & Molecular Biology Program	
11/2012-08/2021 Faculty, Center for Systems Biology	
09/2013-08/2015 Associate Professor of Computational Medicine & Biology	
09/2013-08/2021 Faculty, Center for Integrative Research in Critical Care	
09/2015-08/2021 Professor of Molecular & Integrative Physiology	
Professor of Computational Medicine & Bioinformatics	
Faculty, Michigan Institute for Computational Discovery and Eng	gineering
Faculty, Michigan Institute for Data Science	-
06/2017-08/2021 John A. Jacquez Collegiate Professor of Physiology	
01/2019-08/2021 Faculty, Precision Medicine	

University of Notre Dame, Notre Dame, Indiana, USA

09/2011-present Professor, Biological Science Professor, Applied and Computational Mathematics and Statistics

Administrative/Leadership Appointments, and Accomplishments

Indiana University, Bloomington, Indiana, USA

08/2004-05/2008 Associate Director, Biocomplexity Institute

- Led an initiative to revitalize the extramural funding of the institute through the submission of a national center grant.
- Recruited and hired two new faculty members between 2005 and 2007, increasing the size of the Biocomplexity core faculty by 20%.
- Organized and led fundraising for three international workshops (250 attendees per meeting)
- Established key components of the PhD in Informatics, especially in creating a complex systems track.

University of Michigan, Ann Arbor, Michigan, USA

2 0	0	
06/2009-present	Director, Summer Undergraduate Research Fellowship Program, Department of	
	Molecular & Integrative Physiology, Medical School	
07/2010-present	Director, Interfacing Computation and Engineering with Digestive and Metabolic	
_	Physiology Program	
• Co-organized the establishment of a summer fellowship program to attract undergraduate		
students to	rain hands-on research experiences in the Department of Molecular & Integrative	

- students to gain hands-on research experiences in the Department of Molecular & Integrative Physiology and other University of Michigan Medical School laboratories.
- Led the independent funding of a summer fellowship program through an NIDDK R25 grant "Interfacing Computation and Engineering with Digestive and Metabolic Physiology Program". This educational program served as a template to fund two additional R25 programs, effectively converting our summer fellowship program into an umbrella program. On average, our umbrella program attracts 75 students annually across the nation.
- Led the establishment of partnerships with minority serving institutions (University of Texas Rio Grande Valley, San Francisco State University, University of North Carolina Pembroke, Howard University) to attract students from diverse backgrounds to our summer programs and the University of Michigan graduate programs.

06/2012-present Associate Director, Systems and Integrative Biology Training Program, Medical School

• Led the revitalization of the program by creating a graduate course to introduce mathematical modeling to biomedical scientists and a hands-on workshop to introduce modeling principles to students and faculty.

- In collaboration with the Program Director, led the successful renewal of the training grant and expanded its scope to recruit students registered in different biomedical science programs at the university.
- Established a diversity, equity and inclusion strategy, which increased the diversity of our trainees from 5% to 23% within three years.

10/2013-present Director, In Silico Protein Analysis Module, Protein Folding Diseases Initiative

- Contributed to the establishment of the Protein Folding Disease Initiative, which has now become a new virtual research center at the University of Michigan.
- Led the establishment of a core research facility at the university (In Silico Protein Analysis Module), providing mathematical and computational modeling services for the biomedical science community.
- Contributed to the recruitment of two faculty members in the area of protein folding diseases, served the pilot research program committee to catalyze collaborations, and served as co-organizer for an annual protein folding disease symposia (300 participants).

10/2016-07/2017 Basic Science and Faculty Research Lead, Office for Health Equity and Inclusion, Medical School

- Led the development, coordination and implementation of the Strategic Plan for Diversity, Equity and Inclusion (DEI) of the 10 Basic Science Departments/Units at the University of Michigan Medical School: Biomedical Engineering, Biological Chemistry, Cell & Developmental Biology, Computational Medicine & Bioinformatics, Human Genetics, Learning Health Sciences, Microbiology & Immunology, Molecular & Behavioral Neuroscience, Molecular & Integrative Physiology and Pharmacology.
- Contributed to establishment of a pilot funding program to promote the creation of initiatives that increase diversity, equity and inclusion at Michigan Medicine.
- Oversaw and managed the research team responsible for evaluating DEI surveys and statistics in the medical school.
- Spearheaded the establishment of the University of Michigan Society for the Advancement of Chicanos/Latinos and Native Americans in Science (SACNAS) Chapter. Under my leadership, the Michigan SACNAS Chapter received two Chapter Awards. The Chapter also nominated two university faculty members, who were successfully awarded the SACNAS Distinguished Scientist and Mentor Awards.

08/2017-02/2021 Interim Chair, Department of Molecular & Integrative Physiology, Medical School

03/2021-08/2021 Chair, Department of Molecular & Integrative Physiology, Medical School

- Led the largest basic science department with a budget in excess of \$26 million dollars, \$28 million in research support, 57,000 square feet of research space across 6 different buildings in the medical campus, and approximately 110 faculty members. Managed the day-day operations of the department with 13 staff members.
- Led the department to become and remain the top-NIH funded physiology department in the nation.
- Increased the total annual operating revenue from \$20.7 to \$26.9 million, total revenue in indirect costs and tuition from \$3.4 to \$4.7 million, and total cash and investments from \$11.2 to \$17.2 million.
- Successfully completed the fundraising campaign for two endowed collegiate professorships and established an endowment to support our department postdoctoral program activities. I increased the size of our endowment by 53% (from \$5.4 to \$8.3 million) in the last three years.

- Recruited one primary junior faculty, one lecturer, two new joint junior faculty, and appointed six joint intramural faculty, 15 research faculty, and seven adjunct faculty.
- Successfully put forth 10 primary faculty for promotion: five faculty on the instructional track and five faculty on the research track.
- Promoted faculty and students to the wider scientific community by nominating them for national and international awards. Among awards received, six members of our faculty were elected fellows of the American Association for the Advancement of Science and one of the Latin American Academy of Science.
- Successfully retained four faculty members with limited funding available through the department by obtaining resources from the school and university.
- Prepared a standard procedural manual to ensure optimum department operation and a consistent delivery of policies and services to our faculty, staff and trainees.
- Stewarded increase of the diversity of our trainees in our department educational programs, which now consist of nearly one third underrepresented minorities. In addition, I recruited one underrepresented minority to our faculty and diversified the office staff. The office staff is now 30% underrepresented minorities.
- Organized an internal self-study of the department, a department retreat, and stewarded the external review of the department.
- Launched initiatives to explore creating an online master's in physiology, teaching certificate in physiology, and a research master's program for medical students and physicians.

University of Notre Dame, Notre Dame, Indiana, USA

09/2011-present William K. Warren Foundation Dean of the College of Science

Leadership in Academic Societies

07/2015-07/2017 President of the Society for Mathematical Biology

- Led the society by serving as chair of the board of directors, managing its budget, presiding over the annual meetings, stewarding its official publications, and running the society educational and awards program.
- Prepared a standard procedural manual to ensure optimum society operation and a consistent delivery of services. Also revamped the society grant programs to serve educational and outreach initiatives, as well as international programs.
- Doubled the annual operating budget from \$750,000 to \$1.5 million by doubling its membership from approximately 500 to 1,000, tripling the number of papers published by our official journal from 100 to 300 per year, and fundraising events.
- Recruited the new editor-in-chief for our official journal, The Bulletin of Mathematical Biology, and revamped the journal scope and editorial board to make our publication more attractive.
- Made major gains in fundraising for the Society, including donor visits and corporate and university events. Efforts resulted in a four-fold increase of the Society's endowment. This led to the establishment of awards to recognize excellence in mathematical biology at different career stages.
- Established the Society's subgroups program allowing members to meet and interact within more focused areas in smaller groups.

01/2018-present Council Member of the Association of Chairs for the Department of Physiology

• Representative of the association at the Council of Faculty and Academic Societies of the American Association of Medical Colleges. Under this role, I identify critical issues facing physiology departments in medical schools across the nation and serve as a voice for the physiology departments at the American Association of Medical Colleges.

- Reorganizing national annual department surveys to collect data that assist chairs in benchmarking their department nationally while providing quantitative data that allows for resource bargaining within their respective institutions.
- Leading an initiative to rank undergraduate and graduate educational programs in physiology and departments of physiology in the US News & World Ranking of Universities.
- Leading an initiative to create a database of underrepresented minorities in the biomedical sciences to assist academic faculty identify physiologists for panels, symposium organizers and award committees who may diversify their talent pools.

01/2022-present Secretary of Section A, American Association for the Advancement of Science

Research Interests

I combine chemical kinetics and metrology with mathematical, computational and statistical methods to develop standard-based approaches to measure the rates of biochemical reactions and distinguish their molecular mechanisms under physiological conditions. I primarily focus on studying enzyme catalyzed reactions and aberrant protein aggregation reactions that lead to pathological conditions. I also develop quantitative approaches to measure other phenomena in the biomedical sciences.

My goal is to develop standard-based methods in biology and medicine to obtain high-quality measurements with rigor, reproducibility, and robustness. This research in measurement innovation science - biometrology - facilitates the translation of basic science and clinical research to inspire breakthroughs in the biomedical sciences.

In addition to my work in biometrology, I also work on collaborative projects, investigating complex physiological systems such as patterns of intestinal villi growth, oocyte cell division, mechanisms of GPCR internalization, and ER stress sensing mechanisms, which comprise many interacting components, where modeling and theory may aid in the identification of key mechanisms underlying the behavior of the system as a whole. For more information about current research projects, please visit the Schnell Lab website: http://www.med.umich.edu/schnell-lab/

Grants

Current support

01/2010-11/2021, NIH/NIDDK R25 DK088752 (competitive renewal), "Interfacing computation and engineering with digestive and metabolic physiology". Role: Principal Investigator/Program Director (10% effort). Total funds (10 years): \$1,080,000. Total current 5-year cycle funds: \$540,000.

09/2014-08/2024, NIH/NIDDK T32 DK101357 (competitive renewal), "Multidisciplinary Training Program in Basic Diabetes Research". Principal Investigator/Program Director: Ormond MacDougald, Role: Associate Director (1% effort). Total funds (10 years): \$3,486,054. Total current 5-year cycle funds: \$1,671,630.

09/2017-05/2022, NIH/NICHD R37 HD034860, "Cellular and molecular bases for rhythmic GnRH release". Principal Investigator: Suzanne Moenter, Role: Co- Investigator (3% effort). Total funds (5 years): \$2,578,598

09/2018-08/2023, NIH/NICHD R01 HD41469, "Central Actions of Estrogens: Effects on GnRH Neurons". Principal Investigator: Suzanne Moenter. Role: Co-Investigator (5% effort). Total funds (5 years): \$2,260,873

02/2019-01/2024, NIH/NIGMS R01 GM126028, "Mouse oocyte fate determination via polarized cytoplasmic transport within germline cysts". Principal Investigator: Lei Lei, Role: Collaborator (18% effort for postdoctoral fellow in lab). Total funds (5 years): \$1,912,841

06/2020-05/2023, NIH/NIDDK F31 DK122761, "Structure-function relationship of intrinsically disordered regions in diabetes-associated proteins". Principal Investigator: Morgan Gingerich, Role: Mentor (0% effort). Total funds (3 years): \$126,360

06/2020-05/2025, NIH/NINDS U54 NS117170, "Epilepsy Multiplatform Variant Prediction (EpiMVP)", Principal Investigators: Lori Isom, Gemma Carvill, Michael Uhler, Margaret E. Ross, Jack Parent, and Yu Wang, Role: Co-Investigator (5% effort). Total funds (5 years): \$11,935,759

08/2020-07/2025, NIH/NEI K08 EY031757, "Glutamine as an alternative fuel source for photoreceptors". Principal Investigator: Thomas J. Wubben, MD, Role: Mentor (0% effort). Total funds (5 years): \$1,163,035

Past Support

12/2002-11/2005, The Wellcome Trust, London. Ordinary Research Fellowship, the Advanced Training Programme in Mathematical Biology (Grant No. 069155/Z/02/Z) "Models for pattern formation in somitogenesis: incorporating the effects of Fibroblast Growth Factor-8, Cell Adhesion Molecules and *Hox* genes". Principal Investigator: Santiago Schnell (100% effort) with the sponsorship of P. K. Maini and C. D. Stern. Total funds (3 years): GBP116,465

05/2005-04/2006, NIH/NIGMS R13 GM75730, "Workshop: Biocomplexity VII - Unravelling the Function and Kinetics of Biochemical Networks" Principal Investigator: Santiago Schnell (0.5 calendar month effort). Total funds (1 year): \$12,749

05/2005-04/2006, NSF MCB-0513693, "Workshop: Biocomplexity VII - Unravelling the Function and Kinetics of Biochemical Networks". Principal Investigator: Santiago Schnell (0.5 calendar month effort). Total funds (1 year): \$15,000

05/2005-04/2006, Indiana University, Office of the Vice President for Research, Faculty Research Support Program "Modeling the Formation of Vertebral Precursors". Principal Investigator: Santiago Schnell (1 calendar month effort). Total funds (1 year): \$66,999

03/2006-06/2006, Indiana University, Office of the Vice Chancellor for Academic Affairs and Dean of Faculties Multidisciplinary Ventures and Seminars Fund Application "Multiscale modeling of multicellular systems: An interdisciplinary workshop". Principal Investigator: Santiago Schnell. Total funds (1 year): \$5,000

05/2006-04/2007, NSF Division of Integrative Organismal Biology, "Biocomplexity 9: Multiscale modeling of multicellular systems: An interdisciplinary workshop". Principal Investigator: Santiago Schnell. Total funds (1 year): \$10,000. Supplement to grant "Biocomplexity – Multiscale simulation of avian limb development", James Glazier (Principal Investigator)

08/2005-08/2009, NSF IIS-0513650, "SEI: NetWorkBench - A Large-Scale Network Analysis, Modeling, and Visualization Toolkit for Biomedical, Social Science and Physics Research". Principal Investigator: Katy Börner, Role: Co-Principal Investigator (1 calendar month effort). Total funds (4 years): \$1,120,924 08/2005-01/2010, NSF IIS-0513701 and 0852743, "SEI: Unraveling the structure and kinetics of biochemical pathways from time-series data". Principal Investigator: Santiago Schnell (2 calendar months effort). Total funds (4 years): \$473,541

09/2005-08/2012, NIH/NIGMS R01 GM076692 (competitive renewal), "Multiscale Studies of Segmentation in Vertebrate Embryos". Principal Investigator: James A Glazier, Role: Co-Principal Investigator (1 calendar month effort). Total funds (7 years): \$6,276,639

05/2009-01/2010, NSF REU Supplement for Grant No. IIS-0852743, "SEI: Unraveling the structure and kinetics of biochemical pathways from time-series data". Principal Investigator: Santiago Schnell. Total funds (1 year): \$8,640

09/2010-08/2014, James S. McDonnell Foundation, Grant No. 220020223, "Identification of bistable network topologies associated with toxic aggregation thresholds found in conformational diseases". Role: Principal Investigator (35% effort). Total funds (4 years): \$413,488

01/2011-6/2012, NIH/NIGMS F31GM0967728, "Defining reaction mechanisms of threshold phenomena in conformational diseases", Principal Investigator: Conner I. Sandefur, Role: Mentor (0% effort). Total funds (2 years): \$77,150

02/2011-06/2011, Amgen Inc., Independent Medical Education Support MED#-24867, "Systems Biology Symposium". Principal Investigator: Santiago Schnell. Total funds (1 year): \$5,000

06/2011-05/2012, NSF DMS-1135663, "Travel Conference Grant Program for Transatlantic Joint Conference of the Society for Mathematical Biology and the European Society for Mathematical and Theoretical Biology". Role: Principal Investigator (0% effort). Total funds (1 year): \$ 30,000

08/2010-08/2020, NIH/NIDDK R01 DK089933 (competitive renewal), "Morphogenesis of fetal intestinal epithelium". Principal Investigator: Deborah Gumucio, Role: Co-Investigator (5% effort). Total funds (10 years): \$4,092,757

11/2010-12/2015, NIH/NIDDK R01 DK053456, "Enhancement of Biomarkers for Type 1 Diabetes". Principal Investigator: Massimo Pietropaolo, Role: Co-Investigator (10% effort). Total funds (5 years): \$3,747,970

02/2011-12/2012, University of Michigan, Gilbert Whitaker Fund for the Improvement of Teaching, "Portable Physiology Computer Lab: Enhancing Student Learning of Physiology and Computational Modeling". Principal Investigator: Santiago Schnell (0% effort), Co-Principal Investigator: Elizabeth Rust. Total funds (2 years): \$10,000

06/2011-12/2012, University of Michigan, Center for Computational Medicine & Bioinformatics Pilot Grants 2010. "Constructing regulatory networks that drive malignant metabolism and proliferation". Principal Investigator: Santiago Schnell (3.5% effort), Co-Principal Investigator: Sofia Merajver. Total funds (1 year): \$50,000

07/2011-06/2021, NIH/NIGMS T32 GM008322 (competitive renewal), "Systems and Integrative Biology Training Grant". Principal Investigator/Program Director: Malcolm Low, Role: Co-Director (5% effort). Total funds as Co-Director (10 years): \$2,383,932. Total current 5-year cycle funds: \$1,335,912.

08/2011-06/2016, NIH/ NHLBI, K23HL109149, "Mesenchymal stromal cell matricellular protein expression and bronchopulmonary dysplasia". Principal Investigator: Antonia Popova, Role: Co-Mentor (0% effort). Total funds (5 years): \$712,814

09/2012-09/2015, NIH/NIDDK F30 DK095517, "Notch Signaling Regulates Generation of Progenitors from Intestinal Stem Cells". Fellow: Alexis Carulli, Role: Co-Mentor (0% effort). Total funds (3 years): \$99,909

09/2012-08/2017, NIH/NIDDK U24 DK097153, "Michigan Regional Comprehensive Metabolomics Resource Core (MRC2)". Principal Investigator: Charles Burant, Role: Co-Investigator (5% effort). Total funds (5 years): \$9,170,679

12/2012-06/2014, University of Michigan, MCubed Program, "Manipulating CXCL12-CXCR4 signaling pathway in breast cancer with an experimental and computational approach". Principal Investigator: Jennifer Linderman. Co-Principal Investigator: Santiago Schnell (0% effort). Total funds (2 years): \$50,000

01/2013-07/2015, James D. McDonnell Foundation, 2012 Postdoctoral Fellowship Award Program, "Using complex systems approaches to facilitate the discovery of next generation anti-cancer strategies". Principal Investigator: Michelle L. Wynn, Role: Mentor (0% effort). Total funds (2 years): \$200,000

05/2013-09/2015, University of Michigan, Rackham Faculty Allies for Diversity in Graduate Education, "Enhancing diversity in physiology graduate education", Principal Investigator: Santiago Schnell (0% effort), Co-Principal Investigator: Jimo Borjigin. Total funds (2 years): \$52,618

09/2013-08/2016, NIH/NIDKK DP3 DK101083, "A Novel Approach Applying CFM Metrics to Identify a Prediabetic State". Principal Investigator: Massimo Pietropaolo, Role: Co-Investigator (5% effort). Total funds (3 years): \$1,452,951

09/2013-08/2017, NIH/NIDD R01 DK096972, "Notch Pathway Regulation of Intestinal Epithelial Cell Homeostasis". Principal Investigator: Linda Samuelson, Role: Co-investigator (5% effort). Total funds (5 years): \$1,319,300

10/2013-09/2018, University of Michigan Medical School, FastForward to tomorrow's cure, "Center for Protein Folding Diseases". Principal Investigators: Henry L. Paulson and Andrew Lieberman, Role: Core Director (3% effort). Total funds (5 years): \$9,345,598

01/2015-12/2015, University of Michigan Medical School, Becky Babcox Research Fund - Department of Neurology, "Experimental and computational dissection of α -synuclein fibrillation mechanism of inhibition". Principal Investigators: Magdalena Ivanova and Santiago Schnell. Total funds (1 year): \$30,000

06/2015-05/2017, University of Michigan Medical School, Discovery Fund, "The role of intrinsically disordered protein regions of the diabetes gene CLEC16A in pancreatic β -cell mitophagy". Principal Investigators: Scott A. Soleimanpour and Santiago Schnell (5% effort). Total funds (2 years): \$185,478

09/2015-06/2018, NIH/NICHD F30 HD085721, "Integrating network and intrinsic changes in the GnRH neuron control of ovulation". Principal Investigator: Caroline Adams, Role: Co-Mentor (0% effort). Total funds (3 years): \$74,914

04/2016-03/2017, NIH/NIDDK R56 DK108921, "Mediators of mitophagy in the regulation of beta cell function". Principal Investigator: Scott A. Soleimanpour, Role: Co-Investigator (5% effort). Total funds (5 years): \$115,250

07/2016-06/2021, Juvenile Diabetes Research Foundation 5-CDA-2016-189-A-N, "Targeting mitophagy to prevent beta cell failure in the pathogenesis of T1D (Career Development)". Principal Investigator: Scott A. Soleimanpour, Role: Co-Investigator (5% effort). Total funds (5 years): \$750,000

09/2016-08/2021, NIH/NIDDK R01 DK108921, "Mediators of mitophagy in the regulation of beta cell function". Principal Investigator: Scott A. Soleimanpour, Role: Co-Investigator (5% effort). Total funds (5 years): \$1,937,500

07/2017-06/2018, University of Michigan, Israel Partnership for Research and Education, "Gaining new insights into molecular mechanisms for the yeast Ire1 stress sensor activation using microfluidic pulsatile inputs and mathematical modeling". Principal Investigator: Santiago Schnell and Yonatan Savir. Total funds (1 year): \$50,000

12/2017-11/2020, NIH/NINDS R33 NS101030, "Small molecule stabilizers of Hsp70 for treatment of spinal and bulbar muscular atrophy". Principal Investigator: Andrew Lieberman and Yoichi Osawa, Role: Co-Investigator (3% effort). Total funds (3 years): \$1,162,500

04/2018-03/2020, NIH/NIDDK F31 DK117610, "Defining the Sestrin2-AKT signaling pathway, a novel mechanism in the insulin signaling network". Principal Investigator: Allison Ho, Role: Mentor (0% effort). Total funds (2 years): \$82,334

Submitted grants

01/2022-12/2027, NIH/NIGMS R25GM142081 "Summer Neuroscience Research Fellowships Allowing Teachers to Introduce Advanced Research Practices into High Schools". Principal Investigator/Program Director: Greg Gage, Role: Co-Director (5% effort). Total funds (5 years): \$1,249,192.53.

12/2021-11/2021, Dr. Scholl Foundation, "An Open Dynamic Book to Empower Mathematical Teaching in the Biomedical Sciences". Principal Investigator: Santiago Schnell (7% effort). Total funds (1 year): \$24,948.

IDEA Scholarship, Fundación IDEA, Instituto de Estudios Avanzados, Valle de
Sartenejas, Venezuela
Honorable Mention in Biology (for outstanding research thesis)
Universidad Simón Bolívar, Valle de Sartenejas, Venezuela
José Gregorio Hernández Award, Academia Nacional de Medicina de Venezuela
and Pembroke College, Oxford, UK
ORS Award, Committee of Vice-Chancellors and Principals of the
Universities of the United Kingdom, London, UK
CONICIT Scholarship, Consejo Nacional de Investigaciones Científicas y
Tecnológicas, Venezuela
Lord Miles Senior Scholar in Science, Pembroke College, Oxford, UK
Junior Research Fellow, Christ Church, University of Oxford, UK
Ordinary Fellow of the Wellcome Trust, Advanced Training Programme in
Mathematical Biology, The Wellcome Trust, London, UK
Faculty Award for Teaching Excellence, Indiana University School of
Informatics (Bloomington)

Honors and Awards

09/2010-08/2014	21st Century Scientist Scholar, James S. McDonnell Foundation, USA
11/2011	Fellow of the Royal Society of Chemistry, London, UK
01/2013	League of Educational Excellence (inaugural member), University of Michigan
	Medical School
10/2013	Endowment for Basic Science Teaching Award in Molecular & Integrative
	Physiology, University of Michigan Medical School
11/2013	Visiting Professor of Excellence, Department of Chemistry, University of
	Barcelona, Barcelona, Spain
11/2016	Fellow of the American Association for the Advancement of Science,
	Washington DC, USA
11/2016	Fellow of the Society for Mathematical Biology (inaugural class of 2017)
06/2017	John A. Jacquez Collegiate Professor of Physiology, University of Michigan
	Medical School
04/2018	Fellow of the Academia de Ciencias de América Latina
04/2019	Emerging Leader in Health and Medicine, National Academy of Medicine

Memberships in Professional Societies (current)

01/1996-present	Society for M	Society for Mathematical Biology (SMB)		
	2008-2012	Member, Board of Directors		
	2010	Member, Nomination Committee		
	2011-2014	Member, Newsletter Editorial Board		
	2012-2015	Chair, Finance Committee		
	2014-2015	President-elect		
	2015-2017	President		
	2017-2018	Past-president		
	2014-2018	Chair, Publications Committee		
	2018-	Chair, Finance Committee		
	2018-	Chair, Past-Presidents Advisory Board		
01/1996-present	Society for In	dustrial and Applied Mathematics (SIAM)		
01/1999-present	European Soc	eiety for Mathematical and Theoretical Biology (ESMTB)		
01/2008-present	The American	n Physiological Society (APS)		
	2017-	Member, Association of Chairs of Dept. of Physiology		
		2018- Council Member		
		2018- Representative to Council of Faculties and Academic		
		Societies, Association of American Medical Colleges		
01/2008-present	Society for th	e Advancement of Chicanos/Latinos and Native Americans in		
	Science (SACNAS), Life member			
	2015	Faculty founder, University of Michigan SACNAS Chapter		
	2015-	Faculty mentor for SACNAS Chapter		
		- Best Chapter Award (2016)		
		- Outstanding Recruitment/Membership Award (2017)		
01/2009-present		cal Society (BS)		
	2012-2019	Member, Minority Affairs Committee		
		- Founder of Alliance of Scientific Societies (2015) ¹		
10/2011-present		v of Chemistry (RSC)		
09/2011-present		ciety for Cell Biology (ASCB)		
12/2012-present		ciety for Biochemistry and Molecular Biology (ASBMB)		
12/2012-present	American Ass	sociation for the Advancement of Science (AAAS)		

¹ In 2017, this program was funded by an NSF/MCB Eager Grant: MCB-1744098 entitled "Alliance of Scientific Societies for the Development of the Next Generation of Scientists" (PI: Marina Ramirez-Alvarado)

	2022-	Secretary
01/2014-present	American C	Chemical Society

Editorial positions, boards and peer-review service Editorial positions

Lanorial positions	
11/2002-09/2004	Guest Editor, Progress in Biophysics and Molecular Biology
	Special focused issue on "New approaches to modelling and analysis of
	biochemical reactions, pathways and networks" (Volume 86, Number 1), with E
	J Crampin
01/2005-07/2006	Associate Editor, IEE Proceedings in Systems Biology
	Special focused issue on "Unravelling the function and kinetics of
	biochemical networks: From experiments to systems biology"
10/2006-12/2007	Guest Editor, Current Topics in Developmental Biology
	Volume focused on "Multiscale Modeling of Multicellular
	Systems" (Volume 81)
10/2016-present	Guest Editor, PLoS Computational Biology
01/2019-present	Editor-in-Chief, Mathematical Biosciences
Editorial Boards	
01/2006-12/2014	Editorial Board, Computational Biology & Chemistry
08/2006-07/2014	Editorial Board, IET Systems Biology
04/2009-12/2018	Editorial Board, Mathematical Biosciences
01/2010-12/2010	Editorial Board, Computational & Mathematical Methods in Medicine
09/2012-present	Editorial Board, Biomath
01/2016-present	Editorial Board, Current Opinion in Systems Biology
02/2016-present	Editorial Board, Cancer Research
10/2016-present	Editorial Board, Biophysical Chemistry
07/2019-present	Editorial Advisory Board, Biomolecular Concepts
02/2019-present	Editorial Board, Journal of Theoretical Biology
Grant review panels, st	udy sections and site visits
2006-present	Member, NSF Grant Panel Review Committee
	2006-2009 Information & Intelligent Systems
	2008-2009 Postdoctoral Research Fellowships in Biological
	Informatics
	2010 Faculty Early Career Development (CAREER) Program
	2015-2016 Postdoctoral Research Fellowships in Biological
	Informatics
	National Science Foundation, Washington DC
2008	Site Visit Committee Member, SFI CSET in Systems Biology
	Science Foundation of Ireland
2010-present	Modeling & Analysis of Biological System (MABS) Study Section
1	Center for Scientific Review, National Institutes of Health
	ad hoc Member (10/2010; 09/2011; 02/2012; 06/2012; 02/2020)
	07/2012-06/2016 Permanent Member, Alternate Chair
2015-2017	National Cancer Institute (NCI), National Institutes of Health
	Cancer Systems Biology Consortium (CSBC)
2017	National Institutes of Health, Biomedical Technology Research Resource, Site
	Visit and Special Emphasis Panel/Scientific Review Group 2017/01 ZRG1 BST-
	X (40) P meeting

<i>Peer-review service (m</i> Journals	ACS Catalysis; Acta Biotheoretica; American Journal of Physiology -	
	Endocrinology and Metabolism; American Journal of Physiology –	
	Gastrointestinal and Liber Physiology; Applied Bioinformatics; Archives of Biochemistry and Biophysics; Artificial Life; Beilstein Journal of Organic	
	Chemistry; Biochemical Society Transactions; Biochimia and Biophysica Acta –	
	General Subjects; Biochimia and Biophysica Acta – Reviews on Cancer;	
	Biochemical Journal; Biochimie; Bioinformatics; Biofilms; Biophysical Journal;	
	Biophysical Chemistry; Biotechniques; Biotechnology and Bioengineering;	
	Biotechnology Journal; British Journal of Clinical Pharmacology; BMC	
	Bioinformatics; BMC Systems Biology; Bulletin of Mathematical Biology;	
	Cancer Research; Ciencia; Chemical Reviews; Chemical Communications;	
	Chemical Physics; Comptes Rendus Biologies; Computational & Structural	
	Biotechnology Journal; Computational Biology & Chemistry; Developmental Biology; Electrophoresis; European Journal of Organic Chemistry; FEBS	
	Journal; FEBS Letter; FEBS Open Bio; Frontiers in Genetics (section Genomic	
	Endocrinology); Frontiers in Physiology (section Systems Biology); IEE	
	Proceedings Systems Biology; IEE Transactions on Biomedical Engineering; IET	
	Systems Biology; Immunology and Cell Biology; Integrative Biology; International Journal of Chemical Kinetics; International Journal of	
	Developmental Biology; Journal of Biological Physics; Journal of Chemical	
	Physics; Journal of Chemometrics; Journal of Computational Biology; Journal of	
	Enzyme Inhibition and Medicinal Chemistry; Journal of Mathematical Biology;	
	Journal of Mathematical Chemistry; Journal of Molecular Graphics & Modelling;	
	Journal of Physical Chemistry; Journal of the Science of Food and Agriculture;	
	Journal of Theoretical Biology; Journal of the Royal Society Interface;	
	Mathematical Biosciences; Mathematical Medicine and Biology: A Journal of	
	the IMA; Mathematical Methods in the Applied Sciences; Mechanisms of	
	Development; Molecular BioSystems; Molecular and Cellular Biology;	
	Nonlinearity; Nature; Nature Communications; Naturwissenschaften; Open Biology; Pacific Symposium of Biocomputing; Philosophical Transactions of the	
	Royal Society B: Biological Sciences; Physica A; Physical Letters A, Physical	
	Chemistry Chemical Physics; PLoS Biology; PLoS Computational Biology;	
	PLoS ONE; Proceeding of the Royal Society (London): Series A; Proceeding of	
	the National Academy of Sciences of the United States of America; Proteomics,	
	RSC Advances, Scientific Reports, SIAM Journal of Applied Mathematics.	
Book projects	Cambridge University Press; Elsevier Science; Family Publications; Garland	
	Science; Oxford University Press, Springer-Verlag	
Grant proposals	Agence Nationale de la Recherche (ANR); Banff International Research Station	
	(BIRS); Canadian Institutes of Health Research (CIHR); Center for Scientific	
	Review, National Institutes of Health (NIH, USA); Engineering and Physical Science Council (EPSRC – UK); French National Cancer Institute (INCa,	
	France); Human Frontier Science Program (HFSP); National Science Foundation	
	(USA); Keck Foundation (USA); Netherlands Organisation for Scientific	
	Research – DWO, The Dutch Research Council (Utrecht, Netherlands); Royal	
	Society of New Zealand; Science Foundation of Ireland (Dublin, Ireland); Swiss	
	National Science Foundation; US Army Medical Research and Materiel	
	Command (USAMRMC); Wellcome Trust (London, UK).	
Tenure & Promotion	College of William and Mary (USA), Kansas State University (USA), Moffitt	
	Cancer Center (USA), National Institutes of Health/National Heart, Lung and	
	Blood Institute (USA), Stellenbosch University (South Africa), Ohio State	

University (USA), Purdue University (USA), University of Baltimore (Baltimore County and College Pak, USA), University of California (Irvine, USA), University of Gothenburg (Sweden), University of Pretoria (South Africa), University of South Florida (USA), University of New South Wales (Australia), University of Warwick (UK), University of Waterloo (Canada), Virginia Polytechnic Institute and State University (USA), Vrije Universiteit (Netherlands).

Teaching and Mentoring

÷ .	ral fellows, research associates and faculty
University of Oxford	
<i>Undergraduate</i> 2002	Wilhelm A. Steinmetz (Mathematics, Pembroke College). <u>Project</u> : Fractal enzyme kinetics (joint supervision with J. Hein). 2009 Doctor in Mathematics, Université Paris Sud -Paris XI. Currently Assistant Professor at Federal University of Amazonas in Manaus, Brazil.
Master	
10/2002-07/2003	Thomas E. Turner (M Res in Applied Mathematics). <u>Dissertation</u> : Stochastic and deterministic approaches to modelling <i>in vivo</i> biochemical kinetics. <i>Currently Data Scientist at Aire Labs</i> .
Doctorate	
10/2002-07/2005	Ruth E. Baker (D Phil in Mathematical Biology), <u>Dissertation</u> : Periodic pattern formation in developmental biology: A study of the mechanisms underlying somitogenesis (joint supervision with P. K. Maini). <i>Currently Professor of Mathematical Biology, University of Oxford</i> .
10/2005-12/2008	Edward H. Flach (D Phil in Mathematical Biology). <u>Dissertation</u> : Reactions in open systems: pattern formation with convection, and open biochemical pathways (joint supervision with J. Norbury). <i>Currently Fellow at the Ronin Institute</i> .
Indiana University	
<i>Undergraduate</i> 2006 - 2007	Sonya M. Hanson (Biophysics, University of Southern California). Projects: A test for measuring the effects of enzyme inactivation (2006), and the reactant stationary approximation in enzyme kinetics (2007). 2013 Doctor in Biophysics/Biochemistry, University of Oxford. Currently Faculty, Flatiron Institute.
Master	
08/2004-07/2006	James Thurmond (Master in Bioinformatics). <u>Dissertation</u> : BioFitWeb: A comprehensive on-line resource for enzyme kinetics researchers. <i>Currently Research Associate, Fly Base, Department of Biology, Indiana University, Bloomington, Indiana</i> .
08/2005-07/2006	Sourav Roy (Master in Bioinformatics). <u>Dissertation</u> : Prediction of structural and functional properties of the Notch-Delta pathway during somitogenesis. 2011 PhD in Genetic, University of California – Riverside. Currently Assistant Professor of Computational Biology, University of Texas, El Paso.

08/2007-05/2008	Michelle L. Wynn (Master in Bioinformatics). <u>Dissertation</u> : Modelling neural ganglia cell chain migration. 2013 PhD in Bioinformatics, University of Michigan. Currently Scientist at Zymergen, Inc.
Doctorate	
08/2006-04/2011	Márcio Duarte Albasini Mourão (PhD in Complex Systems), <u>Dissertation</u> : Reverse engineering the mechanisms and the dynamical behavior of complex biochemical pathways. <i>Currently Data Scientist, Thirdware Solution</i> .
Postdoctoral Fellows	
05/2005-09/2006	Ramon Grima. Currently Professor in Biology, University of Edinburgh)
08/2005-07/2007	Santo Fortunato (in co-supervision with Alessandro Vespignani). <i>Currently</i> <i>Professor of Informatics at the Indiana University School of Informatics,</i> <i>Computing and Engineering.</i>
11/2005-05/2008	J. Srividhya. Currently Research Fellow at the Biocomplexity Institute, Indiana University – Bloomington.
08/2007-05/2008	Duygu Balcan (in co-supervision with Alessandro Vespignani). Passed away in 2013 holding an Assistant Professorship of Physical Engineering at the Istanbul Technical University, Maslak, Turkey.

University of Michigan

Undergraduate	
2009-2010	Yue Ding (Biochemistry, University of Michigan). Molecular & Integrative Physiology Summer Research Fellow. <i>MD University of Iowa Carver College of</i>
2010-2011	Medicine and Rheumatology Fellow at Ohio State University. Samantha M. Thomas (Interdisciplinary Physics, University of Michigan). Molecular & Integrative Physiology Summer Research Fellow. 2019 MD/PhD
	from the University of Chicago. Currently Resident at the University of Chicago.
2011-2013	Nikita Consul (Chemical Engineering, Massachusetts Institute of Technology). Molecular & Integrative Physiology Summer Research Fellow. <i>MD Medical</i> <i>student at Columbia College of Physicians and Surgeons and Resident at Baylor</i>
	College of Medicine
2011-2014	Doree R. Kreitman (Mathematics, University of Michigan), Undergraduate
2011 2014	Research Opportunity Program Fellow
2011-2014	Megan Egbert (Chemical Engineering, University of Michigan), Undergraduate Research Opportunity Program Fellow. <i>Currently PhD Student at Boston</i>
2012	University
2012	Paul Ponmattam (Mathematics, Vanderbilt University). Molecular & Integrative Physiology Summer Research Fellow. <i>MSc in Financial Engineering, University</i> of California Berkeley. Currently Quantitative Portfolio Analyst at Wells Capital Management.
2012	Eric Yu (Computer Science and Chemistry, Calvin College), Molecular &
2012	Integrative Physiology Summer Research Fellow. <i>Currently MD student in</i> Medical College of Wisconsin.
2013-2017	Samuel Christensen (Mathematics, University of Michigan), Undergraduate Research Opportunity Program Fellow. <i>Currently PhD student in the University</i>
	of California Los Angeles.
2013-2015	Joe Hakim (Bioengineering, John Hopkins University). Molecular & Integrative Physiology Summer Research Fellow. <i>Currently PhD student Harvard-MIT Health Sciences and Technology</i> .

2015-2016	Alexis Grebenok (Mathematics, Canisius College). Molecular & Integrative Physiology Summer Research Fellow.
2015	Harnel Alezi (Biomedical Engineering, Georgia Tech). Molecular & Integrative Physiology Summer Research Fellow.
2017	Zenny Chu (Biomedical Engineering, Johns Hopkins University). Molecular & Integrative Physiology Summer Research Fellow
2018	Aleesa Monaco (Biochemistry and Mathematics, Arizona State University). Molecular & Integrative Physiology Summer Research Fellow.
2019	Sofia Medina (Mathematics, Florida State University). Molecular & Integrative Physiology Summer Research Fellow. <i>Currently Research Associate at the</i> <i>University of Michigan</i> .
2019	Joseph Cavataio (Biomedical Engineering, University of Michigan) Molecular & Integrative Physiology Summer Research Fellow. <i>Currently MD</i> student at Wayne State University.
Master	
2011-2012	Firas Midani (Biomedical Engineering, University of Michigan). 2018 PhD in Computational Biology and Bioinformatics, Duke University. Currently Postdoctoral Fellow at Baylor College of Medicine
2013-2014	Allison Ho (Molecular & Integrative Physiology, University of Michigan). 2020 PhD in Molecular & Integrative Physiology, University of Michigan Medical School. Currently Postdoctoral Fellow, Department of Surgery, University of
2013-2015	Michigan. Michael Vincent (Molecular, Cellular, and Developmental Biology, University of Michigan). Currently PhD student at Northwestern University.
Doctorate	
06/2008-06/2012	Conner I. Sandefur (PhD in Bioinformatics). <u>Dissertation</u> : Defining chemical reaction mechanisms associated with threshold phenomena in conformation diseases. <i>Currently Assistant Professor at University of North Carolina Pembroke</i> .
01/2011-11/2012	Yan Zhang (PhD in Bioinformatics). <u>Dissertation</u> : Network Discovery in Equilibrium-state and Dynamic Data: Applications to Phosphoproteomics and Kinetics (co-mentored with Philip Andrews). <i>Currently Assistant Professor of</i> <i>Biomedical Informatics at the Ohio State University</i> .
06/2008-01/2013	Michelle L. Wynn (PhD in Bioinformatics). <u>Dissertation</u> : Unraveling the complex regulatory relationships between metabolism and signal transduction in breast cancer (joint supervisor with Sofia Merajver). <i>Currently Scientist at Zymergen, Inc.</i>
04/2009-11/2012	Erin Shellman (PhD in Bioinformatics). <u>Dissertation</u> : Network Motifs Provide Signatures that Characterize Metabolism (joint supervisor with Charles Burant). <i>Currently Scientist at Zymergen</i> .
08/2011-07/2014	Alexis Carulli (MD/PhD in Molecular & Integrative Physiology). <u>Dissertation</u> : The Dynamic Regulation of Intestinal Stem Cells by Notch Signaling (co- mentored with Linda Samuelson). <i>Currently Resident at University of Pittsburgh</i> <i>Medical School</i> .
06/2012-05/2015	Daniel DeWoskin (PhD in Mathematics). <u>Dissertation</u> : Multiscale Modeling of Coupled Oscillators with Applications to the Mammalian Circadian Clock (co- mentored with Daniel Forger). <i>Currently Quantitative Research Analyst at</i> <i>Graham Capital Management</i> .

05/2013-04/2018	Caroline Adams (MD/PhD in Molecular & Integrative Physiology). Dissertation:
	Integrating network and intrinsic changes in GnRH neuron control of ovulation
	(co-mentor with Suzanne Moenter). 2020 MD/PhD University of Michigan
	Medical School. Currently Resident at University of Pennsylvania.
09/2014-03/2020	Allison Ho Kowalsky (PhD in Molecular & Integrative Physiology).
	Dissertation: Defining and characterizing cell signal transduction in the Sestrin2
	pathway (co-mentor with Jun Hee Lee). Currently Postdoctoral Fellow at the
	University of Michigan Medical School.
01/2015-06/2020	Maxwell DeNies (PhD in Cellular & Molecular Biology). Dissertation:
	Investigation of how receptor localization and endocytosis regulate
	CXCR4 signaling and post-translational modification (co-mentor with Allen
	Liu). Currently Associate at RA Capital Management.

Postdoctoral Fellows

10/2008-12/2010	Miguel Rodriguez Marquez. Currently Assistant Professor of Physics, Mount
	Royal University, Calgary, Canada.
07/2011-07/2013	Márcio Duarte Albasini Mourão. Currently Data Scientist, Thirdware Solution
01/2013-04/2016	Michelle L. Wynn (co-mentored with Sofia D. Merajver). Currently Scientist at
	Zymergen, Inc.
08/2013-07/2015	Mark Whidden. Currently Data Scientist, Atreca, Inc.
01/2016-06/2020	T. Wylie Stroberg. Currently Assistant Professor of Mechanical Engineering,
	University of Alberta)
07/2017-08/2021	Justin Eilertsen.

Research Associates/Technicians

06/2012-05/2013	Firas Midani. 2018 PhD in Computational Biology and Bioinformatics, Duke
	University. Currently Postdoctoral Fellow at Baylor College of Medicine
05/2013-present	Mariana Rodriguez Ortiz
05/2015-07/2016	Michael Vincent. Currently PhD student at Northwestern University
06/2015-06/2017	Suzanne Shoffner. Currently MSTP student at the University of Michigan
06/2018-06/2020	Malgorzata Tyczynska. Currently PhD student at the Integrated Mathematical
	Oncology Program at Moffitt Institute.
06/2020-07/2021	Joseph Cavataio, Currently MD student at Wayne State University
07/2020-08/2021	Sofia Medina, Currently DPhil student at the University of Oxford

Intramural mentoring of faculty

05/2008-08/2012	Patrick Nelson, Research Assistant Professor. Department of Computational
	Medicine and Bioinformatics. (Currently Department Chair and Professor of
	Mathematics and Computer Science, Lawrence Technical University, Southfield,
	Michigan)
03/2011-06/2016	Antonia Popova (co-mentor with Marc Hershenson). Assistant Professor of
	Pediatrics Pulmonary Medicine.
09/2014-08/2021	Peter Freddolino, Assistant Professor of Biological Chemistry.

Extramural mentoring of faculty

05/2016-present	Daniel Lobo, Assistant Professor of Biological Sciences, University of Maryland
	Baltimore County. Sponsored through University of Maryland Eminent Scholar
	Mentoring Program.
09/2017-present	Tatiana Marquez Lago, Associate Professor of Genetics, Associate Professor of
	Cell, Developmental and Integrative Biology, University of Alabama at
	Birmingham School of Medicine

2. Doctoral dissertation and research committees

07/2004	Frido Erler (Dr. rer. nat. in Mathematics), "Spatiotemporal calcium-dynamics in presynaptic terminals", Faculty of Mathematics and Natural Sciences of Dresden
07/2005	University of Technology, Dresden, Germany (External Examiner) Cheng Cui (PhD in Biophysics), "Dynamics of cell movement and tissue motion in gastrulation and micromass cell culture", Department of Physics, Indiana
08/2007	University, Bloomington, USA (Committee Member) Ying Zhang (PhD in Biophysics), "Multiscale Simulation of Avian Limb Development", Department of Physics, Indiana University, Bloomington, USA
11/2008	(Committee Member) Dan V. Nicolau, Jr. (D. Phil. Oxon), "Spatial modelling of chemotaxis and its evolution", Mathematical Institute and Balliol College, University of Oxford,
07/2009-04/2011	Oxford, UK (External Examiner) Márcio Mourão (PhD in Informatics), "Unraveling the mechanisms and the dynamical behavior of complex biochemical pathways", Indiana University
01/2010-11/2012	School of Informatics and Computing, Bloomington, Indiana, USA (Chair) Erin Shelman (PhD in Bioinformatics), "Network motifs provide signatures that characterize metabolism", University of Michigan Medical School, Ann Arbor,
06/2010-05/2012	Michigan, USA (co-Chair) Conner Sandefur (PhD in Bioinformatics), "Defining chemical reaction mechanisms associated with threshold phenomena in conformational diseases",
06/2010-01/2013	University of Michigan Medical School, Ann Arbor, Michigan, USA (Chair) Michelle Wynn (PhD in Bioinformatics), "Unraveling the complex regulatory relationships between metabolism and signal transduction in breast cancer",
10/2010-11/2012	University of Michigan Medical School, Ann Arbor, Michigan, USA (co-Chair) Yan Zhang (PhD in Bioinformatics), "Network discovery in equilibrium-state and dynamic data: Applications to phosphoproteomics and kinetics", University
11/2010-01/2013	of Michigan Medical School, Ann Arbor, Michigan, USA (Committee Member) Chunchao Zhang (PhD in Bioinformatics), "Analysis of post-translational modification of histone proteins: cross-talk and beyond", University of Michigan
11/2010	Medical School, Ann Arbor, Michigan, USA (Committee Member) Terry Tang (PhD in Theoretical and Computational Science), "Mathematical modeling of eukaryitic gene expression", University of Lethbridge, Alberta,
01/2011-06/2014	Canada (External Examiner) Ryan O'Connell (PhD in Molecular & Integrative Physiology), "Mechanisms of excitation and remodeling of the cardiac action potential in two model systems", University of Michigan Medical School, Ann Arbor, Michigan, USA
08/2011-06/2013	(Committee Member) Alexis Carulli (MSTP program, PhD in Molecular & Integrative Physiology under the Medical Scientist Training Program), "The Dynamic Regulation of Intestinal Stem Cells by Notch Signaling", University of Michigan Medical School Ann Arbor Michigan USA (Committee Momber)
02/2012	School, Ann Arbor, Michigan, USA (Committee Member) Tanya Salyers (PhD in Applied and Computational Mathematics), "Modeling how social and biological network form", University of Notre Dame, Indiana, US (External Examinar)
06/2012-05/2015	(External Examiner) Daniel DeWoskin (PhD in Applied and Interdisciplinary Mathematics), "Multiscale modeling of coupled oscillators with applications to the mammalian circadian clock", University of Michigan, Ann Arbor, Michigan, USA (Partner Discipline Advisor)

Santiago Schnell, DPhil (Oxon), FRSC

05/2013-06/2015	Chang Gong (PhD in Bioinformatics), "Quantifying the Generation of T Cell Immunity using a Systems Biology Approach", University of Michigan Medical School, Ann Arbor, Michigan, USA (Committee member)
08/2013-02/2015	Zach Harvanek (MSTP program, PhD in Molecular & Integrative Physiology), "Sexual Deprivation, Emotion, and Longevity: Neuropeptidergic Regulation of Aging in Drosophila", University of Michigan Medical School, Ann Arbor,
01/2014-07/2019	Michigan, USA (Committee member) Surojit Sural (MSTP program, PhD in Molecular & Integrative Physiology), "Roles of HSB-1 in Regulation of Heat Shock Factor Activity, Histone Levels, Mitochondrial Function and Longevity", University of Michigan Medical School, Ann Arbor, Michigan, USA (Committee member)
05/2014-04/2018	Ann Arbor, Michigan, USA (Committee member) Caroline Adams (MSTP and PhD in Molecular & Integrative Physiology), "Integrating Network and Intrinsic Changes in GnRH Neuron Control of Ovulation", University of Michigan Medical School, Ann Arbor, Michigan, (co- Chair)
09/2015-07/2019	Chair) Zhengda Li (PhD in Bioinformatics), "Molecular Circuits of Biological Oscillators", University of Michigan Medical School, Ann Arbor, Michigan, (Committee member)
06/2016-04/2020	Allison Ho (PhD in Molecular & Integrative Physiology), "Defining and Characterizing Cell Signal Transductions in the Sestrin2 Pathway", University of Michigan Medical School, Ann Arbor, Michigan, USA (co-Chair)
06/2016-07/2020	Maxwell DeNies (PhD in Cell & Molecular Biology), University of Michigan Medical School, Ann Arbor, Michigan, USA (co-Chair)
10/2017-06/2021	Dana Felker (PhD in Toxicology), Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA (Committee Member)
03/2018-08/2021	Edith Jones (PhD in Molecular & Integrative Physiology), University of Michigan Medical School, Ann Arbor, Michigan, USA (Committee member)
07/2018-08/2021	Morgan Gingerich (PhD in Cellular & Molecular Biology), University of Michigan Medical School, Ann Arbor, Michigan, USA (Committee member)
08/2018-08/2021	Melissa Lemke (PhD in Biomedical Engineering), University of Michigan, Ann Arbor, Michigan, USA (Committee Member)

3. Preliminary examination committees

05/2010	Anuli Anyanuw (PhD in Molecular & Integrative Physiology), University of
	Michigan Medical School, Ann Arbor, Michigan (Chair)
01/2011	Katherine Gurdziel (PhD in Bioinformatics), University of Michigan Medical
	School, Ann Arbor, Michigan (Committee Member)
04/2012	Mark Bolinger (PhD in Molecular & Integrative Physiology), University of
	Michigan Medical School, Ann Arbor, Michigan (Chair)
05/2012	Brandon Govindarajoo (PhD in Bioinformatics), University of Michigan Medical
	School, Ann Arbor, Michigan (Committee Member)
05/2012	Jacob Mertens (PhD in Molecular & Integrative Physiology), University of
	Michigan Medical School, Ann Arbor, Michigan (Chair)
05/2012	Chang Gong (PhD in Bioinformatics), University of Michigan Medical School,
	Ann Arbor, Michigan (Chair)
06/2012	Daniel DeWoskin (PhD in Applied and Interdisciplinary Mathematics),
	University of Michigan, Ann Arbor, Michigan (Partner Discipline Advisor)
02/2013	Jonathan Gumucio (PhD in Molecular & Integrative Physiology), University of
	Michigan Medical School, Ann Arbor, Michigan (Chair)

03/2013	Zachary Harvanek (PhD in Molecular & Integrative Physiology), University of
	Michigan Medical School, Ann Arbor, Michigan (Chair)
05/2013	Joanne Garbincius (PhD in Molecular & Integrative Physiology), University of
	Michigan Medical School, Ann Arbor, Michigan (Committee Member)
07/2013	Xi Chen (PhD in Molecular & Integrative Physiology), University of Michigan
	Medical School, Ann Arbor, Michigan (Committee Member)
05/2014	Amelia Glazier (PhD in Molecular & Integrative Physiology), University of
	Michigan Medical School, Ann Arbor, Michigan (Committee Member)
06/2014	Chanisa Thonusin (PhD in Molecular & Integrative Physiology), University of
	Michigan Medical School, Ann Arbor, Michigan (Committee Member)
04/2017	Judy Baek (MSTP/ PhD in Molecular & Integrative Physiology), University of
	Michigan Medical School, Ann Arbor, Michigan (Chair)
08/2017	Joseph Starrett (PhD in Molecular & Integrative Physiology), University of
	Michigan Medical School, Ann Arbor, Michigan (Chair)
08/2017	Andrew Marquis (PhD in Molecular & Integrative Physiology), University of
	Michigan Medical School, Ann Arbor, Michigan (Chair)
09/2017	Dana Felker (PhD in Toxicology), Department of Environmental Health
	Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
	(Committee Member)
08/2018	Melissa Lemke (PhD in Biomedical Engineering), University of Michigan, Ann
	Arbor, Michigan (Committee Member)

4. Lectures, courses and seminars

University of Oxford

Undergraduate lecture	25
2003	Mathematical ecology and biology (3 lectures)
Graduate lectures	
2002	Mathematical biology and medicine (2 lectures)
2003	Computational biology and bioinformatics (4 lectures)
Undergraduate classes	s and tutorials
1999-2003	Mathematical ecology and biology
2000-2004	Calculus of one variable and discrete mathematics
2000-2004	Calculus of two or more variables
2000-2004	Fourier series and two variable calculus
2000-2004	Partial differential equations in two dimensions and applications
2000-2004	Dynamics
2002-2004	Complex Analysis
2000-2004	Probability
2000-2004	Statistics
Graduate classes	
2001-2004	Mathematical modelling
2001-2004	Special topics in computational and mathematical modelling
Seminars	
2002-2004	Convener for mathematical ecology and biology graduate seminars

Indiana University

Undergraduate lecture	es/classes	
2004-2006	Introduction to informatics	
2007	Topics in informatics: Systems biology	
Graduate lectures/classes		
2004-2006	Introduction to informatics	

Santiago Schnell, DPhil (Oxon), FRSC

2005	Mathematical methods for biologists
2006-2008	Mathematical methods in informatics
2007	Systems biology: A user's guide
Seminars	
2005	Convener for the informatics graduate seminars
2005-2008	Convener for the honors undergraduate seminars in computer science and
	informatics

University of Michigan

- · · · · · · · · · · · · · · · · · · ·	
Graduate lectu	res/classes
2009-2010	Cellular Physiology (4 lectures per semester)
2009-2021	Aspects of Physiological Research (1 lecture per semester)
2009-2013	Organogenesis of Complex Tissues (2 lectures per semester)
2010-2021	Computational Systems Biology in Physiology (28 lectures per semester)
2014-2015	Biophysical Methods II (2 lectures per semester)
Seminars	
2009-2021	Molecular & Integrative Physiology Student Seminar, Co-convener and faculty
	evaluator
2010-2021	Co-convener for Systems Biology Journal Club/Workshop, Department of
	Molecular & Integrative Physiology

Committee, Organizational and Volunteer Service

Committee, Organiz	zational and Volunteer Service
Indiana University	
08/2004-05/2008	Member, Executive Committee, Biocomplexity Institute
08/2004-05/2006	PhD Development & Implementation Committee, School of Informatics
08/2004-05/2008	Member, Graduate Program Committee, School of Informatics
08/2005-12/2005	Member, Diversity Plan Committee, School of Informatics
01/2006-05/2008	Member, Diversity Committee, School of Informatics
08/2005-07/2006	Member, Systems Biology Search Committee, Department of Biology
08/2005-07/2006	Member, Publication Initiative Committee, School of Informatics
08/2006-07/2007	Member, Biocomplexity Faculty Search Committee, Department of Physics
08/2006-05/2008	Member, Graduate Admission Committee, School of Informatics
University of Michigan	
06-2008-07/2016	Instructor, Michigan Math and Science Scholars Program
08/2008-07/2010	Member, Curriculum Committee, Bioinformatics Program
08/2008-07/2010	Member, Graduate Affairs Committee, Bioinformatics Program
08/2009-present	Member, Bioartography Program
08/2009-09/2013	Member, Graduate Program Committee, Department of Molecular & Integrative
	Physiology
02/2010-08/2017	Physiology Representative, Faculty Ally for Diversity in Education, Rackham
	Graduate School
01/2010-02/2011	Master Program Development Committee, Molecular & Integrative Physiology
01/2010-03/2011	Lecturer Search Committee, Department of Molecular & Integrative Physiology
01/2010-07/2010	Tuition Return Committee, Department of Molecular & Integrative Physiology
03/2011-06/2016	Operating Committee, Master Program, Department of Molecular & Integrative
	Physiology
08/2011-07/2013	Seminar Committee, Center for Computational Medicine & Bioinformatics
10/2011-07/2017	Operating Committee, Medical Scientists Training Program
09/2013-08/2017	Faculty Advisor, Association of Multicultural Scientists, Program in Biomedical
	Sciences

Santiago Schnell, DPhil (Oxon), FRSC

12/2013-present	Academy for Educational Excellence and Scholarship, University of Michigan Medical School
05/2014-07/2017	Faculty Mentor, Michigan Biological Software and iGEM Team University of Michigan ²
06/2014-07/2017	Cellular & Molecular Biology Representative, Faculty Ally for Diversity in
00/2011 0//2017	Education, Rackham Graduate School
09/2014-07/2017	Cellular & Molecular Biology Program Operating Committee, Cellular &
	Molecular Biology Program
05/2015-08/2021	Faculty Founder and Mentor, University of Michigan SACNAS Chapter
01/2016-07/2017	Diversity, Equity & Inclusion Planning, Basic Science Diversity Working Group,
	University of Michigan Health System
02/2016	ad hoc Authorship Dispute Committee, Medical School
08/2016-08/2021	co-Director, Bioartography Program
08/2016-07/2017	Member, Graduate Program Committee, Department of Molecular & Integrative Physiology
03/2017-07/2017	Chair Advisory Committee, Department of Molecular & Integrative Physiology
08/2017-08/2021	Member, Michigan Medicine Leadership Group, Medical School
08/2017-08/2021	Member, Operating Committee Endowment of Basic Sciences, Medical School
08/2017-08/2021	Member, Dean's Advisory Council of Chairs, Medical School
08/2017-08/2021	Member, Michigan Medicine Leadership and Administrators, Medical School
08/2017-08/2021	Member, Research Board of Directors, Medical School
08/2017-08/2021	Member, Internal Advisory Board, Comprehensive Cancer Center
09/2017-08/2019	ARC-Technology Services Steering Committee, University of Michigan
04/2020-08/2021	Faculty Founder and Mentor, University of Michigan Latinx Undergraduate Medical Association
06/2020-08/2021	Member, Advisory Board, Elizabeth Weiser Caswell Diabetes Institute, Medical School
07/2020-08/2021	Member, Academic Funds Flow Initiative for Realignment and Modification, Medical School
10/2020-08/2021	Member, COVID-19 Research Recovery Task Force, Medical School
University of Notre D	ame
09-2021-present	Member, Dean's Council, University of Notre Dame
09/2021-present	Chair, Dean Advisory Council, College of Science
National	
1996-1997	Founding Member, Bioethical Committee, Consejo Nacional de Investigaciones
	Científicas y Tecnológicas, Caracas, Venezuela
2005-2007	<i>ad hoc</i> Member, Scientific Advisory Panel, Office of Chemical Safety and Pollution Prevention Science Advisory Pane, Environmental Protection Agency,
2000 2010	Washington DC Mambar Doord of Scientific Counselant, Commutational Toxicology
2009-2010	Member, Board of Scientific Counselors, Computational Toxicology
2017	Subcommittee, Environmental Protection Agency, Washington DC Member, Board of Scientific Counselors, Division of Intramural Research,
2017	National Heart, Lung and Blood Institute, Bethesda, Maryland

² Team won Bronze Medal and Honorable Mention for Best Software Project in the 2014 iGEM International Competition, Silver Medal and Honorable Mention for Best Software Project in the 2015, iGEM International Competition, and Gold Medal and First Prize for Best Software Project in the 2016 iGEM International Competition.

Member, External Advisory Committee, National Institute of Environmental Health Sciences Superfund Center, Michigan State University, Lansing, Michigan
Member, Bellman Prize Committee, Mathematical Biosciences, Elsevier
Member, Steering Committee, Centre for Mathematical Medicine, Fields
Institute, Toronto, Canada
Member, External review panel, Quality Research Outputs, South
Africa's National Research Foundation
Member, Bellman Prize Committee, Mathematical Biosciences, Elsevier
Member, Scientific Advisory Committee, Mathematical Bioscience Institute,
Ohio State University, Columbus, Ohio, USA
Member, Standards for Reporting Enzymology Data (STRENDA) Commission, Beilstein Institut, Frankfurt am Main, Germany

Conference organized

- "Latinovation: Making Connections", R&D Procter & Gamble, Latin American Division, Caracas, Venezuela, September 18th, 1998 (*Organizing Committee*).
- "III Genomics Informatics day: Bioinformatics, computational biology, systems biology, and mathematical biology - Their relationship" (international conference), University of Oxford, January 22nd, 2005 (*Co-organizer*)
- "Biocomplexity 7: Unravelling the function and kinetics of biochemical networks From Experiments to Systems Biology" (<u>international conference</u>), Indiana Memorial Union, Indiana University, Bloomington, May 9-11th, 2005 (*Organizer*)
- "Biocomplexity 9: Multiscale modeling of multicellular systems" (*international conference*), Indiana Memorial Union, Indiana University, Bloomington, May 8-10th, 2006 (*Organizer* in collaboration with Philip K. Maini, Timothy Newman and James Glazier)
- "ALifeX: Tenth International Conference on the Simulation and Synthesis of Living Systems" (international conference), Indiana University, Bloomington, June 3-7th, 2006 (*Program Committee*)
- 6. "Minisymposium: Identifiability and Inference of Biochemical Pathways", Joint Annual Meeting of The Society of Mathematical Biology and SIAM Conference on the Life Sciences, North Carolina State University, Raleigh, North Carolina, USA, July 31-August 4th, 2006 (*Organizer* in collaboration with Rami Tzafrini)
- "Workshop in Computational Methods for Bioinformatics and Systems Biology: Portuguese Conference on Artificial Intelligence", Guimarãres, Portugal, December 3-7th, 2006 (*Program Committee*)
- "Special Section: Some Mathematical Problems in Biology: From Macromolecules to Ecosystems", American Mathematical Society Central Section Meeting, Indiana University, Bloomington, Indiana, April 5-6th, 2007 (*Organizer* in collaboration with Roger Teman)
- "Second International Workshop on Practical Applications of Computational Biology & Bioinformatics" (<u>international conference</u>), Salamanca, Spain, October 22-24th, 2008 (*Program Committee*)
- "Systems Biology Symposium: Celebrating the Diversity of Contemporary Integrative Biology", Ann Arbor, Michigan, December 1st, 2009 (*Organizer* in collaboration with John A. Williams and Bishr Omary)
- "Annual Meeting of Society for Mathematical Biology", Rio de Janeiro, Brazil, July 26-29th, 2010 (*Scientific Committee*)
- 12. "Second Systems Biology Symposium: From molecules to organisms", Ann Arbor, Michigan, April 4th, 2011 (*Organizer* in collaboration with John A. Williams)

- 13. "International Conference on Mathematical Methods and Models in Biosciences (Biomath 2011)", Sofia, Bulgaria, June 15-18, 2011 (*Program Committee*)
- "Joint Meeting of European Society for Mathematical and Theoretical Biology and the Society for Mathematical Biology", Cracow, Poland, June 28-July 2nd, 2011 (*Organizing and Scientific Committee*)
- 15. "Biomat 2011 International Symposium on Mathematical and Computational Biology", Santiago de Chile, November 5-10th, 2011 (*Scientific Advisory Committee*)
- 16. "12th International Conference on Experimental Chaos and Complexity", Rackham Building, University of Michigan, Ann Arbor, Michigan, May 16-19 (*Scientific Advisory Committee*)
- 17. "International Conference on Mathematical Methods and Models in Biosciences (Biomath 2012)", Sofia, Bulgaria, June 17-22, 2012 (*Program Committee*)
- "6th Annual Midwest Islet Club Conference", Ann Arbor, Michigan, April 22nd-23rd, 2013 (Organizing Committee)
- 19. "International Conference on Mathematical Methods and Models in Biosciences (Biomath 2013)", Sofia, Bulgaria, June 16-21, 2013 (*Steering Committee*)
- "From Cells to Ecosystems: Frontiers in Collaborative Quantitative Physics-Based Multiscale Modeling of Biological Processes", Pan American Advance Studies Institute, Universidade federal do Rio Grande do Sul, Rio Grande, Porto Alegre, Brazil, July 8-26, 2013 (*Advisory Committee*)
- "Diabetes Systems Biology Workshop", Center for Mathematical Medicine, Fields Institute, Toronto, Canada, March 24-26, 2014 (*Organizer* in collaboration with Anmar Khandra and Siv Sivaloganathan)
- 22. "International Conference on Mathematical Methods and Models in Biosciences (Biomath 2014)", Sofia, Bulgaria, June 22-27, 2014 (*Steering Committee*)
- "Targeting Cancer Cell Proliferation and Metabolism Networks", Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, USA, March, 23-25, 2015 (Organizing Committee)
- 24. "Nonlinear Dynamics in Biology Systems", Joint CAMBAM-MBI-NIMBioS Summer School, Montreal, Canada, June 1st-12th, 2015 (**Organizer**)
- 25. "International Conference on Mathematical Methods and Models in Biosciences (Biomath 2015)", Blagoevgrad, Bulgaria, June 14-19, 2015 (*Steering Committee*)
- 26. "Molecules and Machines", Annual Symposium of the University of Michigan Protein Folding Diseases, Ann Arbor, Michigan, September 18, 2015 (*Organizing Committee*)
- "Workshop on Mathematical Oncology VI", Centre for Mathematical Medicine, Fields Institute, Toronto, Canada, April 11-13, 2016 (*Organizer* in collaboration with M. Kohandel, Philip K. Maini and Siv Sivaloganathan)
- 28. "International Conference on Mathematical Methods and Models in Biosciences (Biomath 2016)", Blagoevgrad, Bulgaria, June 19-25, 2016 (*Steering Committee*)
- "The 2016 European Conference on Mathematical and Theoretical Biology jointly with the 2016 Society for Mathematical Biology Annual Conference", Nottingham, UK, July 11-15, 2016 (Scientific Committee)
- 30. "International Conference on Mathematical Methods and Models in Biosciences (Biomath 2017)", Skukuza Camp, Kruger Park, South Africa, June 25-30th, 2017 (*Steering Committee*)
- "The 2017 Society for Mathematical Biology Annual Meeting", University of Utah, July 17-20th, 2017 (*Scientific Committee*)
- 32. "6th Chinese Society for Mathematical Biology International Conference on Mathematical Biology", University of Beijing, Beijing, China, June 15-18th, 2018 (*Scientific Committee*)
- "International Conference on Mathematical Methods and Models in Biosciences (Biomath 2018)", Bulgarian Academy of Sciences, Sofia, Bulgaria, June 24-29, 2018 (*Steering Committee*)

- 34. "2018 Annual Meeting of the Society for Mathematical Biology and the Japanese Society for Mathematical Biology", The University of Sydney, Australia, July 8-12th, 2018 (*Steering Committee*)
- 35. The Maths of Biology Celebrating the day of mathematical biology 10/10", The Royal Swedish Academy of Sciences, Institut Mittag-Leffler, Djursholm, Sweden, October 8-12th, 2018 (Organizing Committee)
- 1st EnzymeML Workshop, University of Stuttgart, Stuttgart, Germany, November 19-20th, 2018 (*co-Organizer*)
- "International Conference on Mathematical Methods and Models in Biosciences (Biomath 2019)", Polish Academy of Science, Institute of Mathematics, Będlewo Conference Center, Poland, June 16-24, 2019 (*Steering Committee*)
- "2019 Annual Meeting of the Society for Mathematical Biology", Concordia University and McGill University, Montreal, July 22-26th, 2019 (*Steering Committee*)
- "2019 Beilstein Enzymology Symposium", Rüdesheim, Germany, September 10-12th, 2019 (Scientific Committee)
- 40. "On growth and pattern formation", Mathematical Institute, University of Oxford, September 18-19th, 2019 (*Organizing Committee*)
- "2020 Annual Meeting of the Society for Mathematical Biology", August 17-20th, 2020 (*Organizing Committee*)
- 42. 2nd EnzymeML Workshop, University of Stuttgart, Stuttgart, Germany, May 10th-14th, 2021 (*co-Organizer*)
- "2021 Annual Meeting of the Society for Mathematical Biology", June 13-17th, 2021 (Scientific Committee)
- MCHBS 2021 Virtual Workshop: "Mathematical Modelling and Control for Healthcare and Biomedical Systems", Italian National Research Council (CNR), Italy, September 28-30th, 2021 (*Scientific Committee*)
- 45. "The 2022 European Conference on Mathematical and Theoretical Biology", University of Heidelberg, Germany, August 31 to September 4, 2022 (*Organizing and Scientific Committee*)

Industry

1997-1998	Member, Global Method Validation Team, R&D Procter & Gamble
1997-1998	Member, Global Sensory Expertise Group, R&D Procter & Gamble
1997-1998	Member, Global Protocol Standardization Committee, R&D Procter & Gamble

Community Service

01/2005-01/2008	Board Member, Tamarron Homeowner Association, Bloomington, IN
03/2009-07/2009	Member, Organizing Committee for Ann Arbor City Tennis Tournament
	Ann Arbor Area Tennis Community Association
09/2011-	President, Huron Mills Association, Ann Arbor, Michigan
03/2015-	Mentor and Instructor, MiRcore/GIDAS Network of High School Students, Ann
	Arbor, Michigan

Professional and Consulting Positions

11/1989-07/1991	Library Assistant (part time), English Literature and Language Teaching
	Information Service (ELLTIS), The British Council, Caracas, Venezuela
03/1997-08/1998	Senior Scientist, Latin American Division, R&D Procter & Gamble
	Cincinnati, USA/Caracas, Venezuela

Occasional consultant for pharmaceutical and chemical industry (Organon, Procter & Gamble, GlaxoSmithKline, and Dow Chemical Company).

Invited research visits and professorships	
07/1996-08/1996	Academic visitor, Centre for Mathematical Biology, Mathematical Institute, Oxford, UK
07/2003	Academic visitor, Bioengineering Institute, University of Auckland, Auckland,
	New Zealand
09/2003	Visiting scientist, Stowers Institute for Medical Research, Kansas City, MO, USA
01/2005-12/2006	Academic visitor (non-resident), Centre for Mathematical Biology, Mathematical Institute, Oxford, UK
04/2006	Research Professor, Computational Biology Collaboratorium, Instituto
11/2000	Gulbenkian de Ciencia, Oeiras, Portugal
11/2008	Academic visitor, Centre for Mathematical Biology, Mathematical Institute, Oxford, UK
07/2009	Research Professor, Computational Biology Collaboratorium, Instituto
	Gulbenkian de Ciencia, Oeiras, Portugal
12/2009	Visiting scholar, Catalonian Reference Network on Theoretical and
	Computational Chemistry, University of Barcelona and Autonomous University
	of Barcelona, Barcelona, Spain
02/2012-03/2012	Academic Visitor, Centre for Synthetic & Systems Biology, University of
	Edinburgh, Scotland, UK
04/2013-05/2013	Academic Visitor, Centre for Mathematical Biology, Mathematical Institute,
	Oxford, UK
11/2013	Visiting Professor of Excellence, Department of Chemistry, University of
	Barcelona, Barcelona, Spain
10/2018	Academic visitor, Institut Mittag-Leffler, Swedish Academy of Sciences,
	Djursholm, Sweden

Visiting Lectureships, Seminars and Extramural Invited Presentations

International lectureships

- Instituto Gulbenkian de Ciência, Oeiras, Portugal, April 1st-8th, 2006. PhD in Computational Biology, "Enzyme kinetics and metabolic networks" (one week course).
- Universidad de Monteávila, Caracas, Venezuela, June 17-24th, 2006. Graduate Certificate in Bioethics, "When does life begin? Conception and development of the human embryo" (one week course).
- 3. Cancer Systems Biology. Transatlantic Summer School, Rostock-Warnemünde, Germany, June 7th-10th, 2009, "Modelling reactions 'the right way' inside the cells"
- 4. University of Barcelona, Barcelona, Spain, November 11th-15th, 2013. Undergraduate in Biochemistry and Molecular Biology, "Modelling reactions inside cells" (one week course).
- 5. McGill University, Montreal, Canada, June 1st-12, 2015. Nonlinear dynamics in biology systems, "Deterministic models of reaction kinetics: Use and abuse of the steady-state approximation"

Invited presentations in scientific meetings

- 1. 1er. Simposium Nacional, El Humanismo en la Medicina, Caracas, Venezuela, October 28th, 1995, "Perspectivas: Una visión ética de la clínica"
- 2. One day dedicated to the mathematical and computational modelling in biology; Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), November 6, 1997, "On cellular stability"
- Four studies in Mathematical Biology, University College London (UCL), March 10th, 2002, "On indistinguishable biochemical pathways. Deduction of the reaction mechanism for complex biochemical reactions"

- Workshop on Theoretical Biophysics, Institute of Biology, Department of Theoretical Biophysics, Hiddensee, Germany, April 2-5th, 2003, "On indistinguishable biochemical pathways. Deduction of the reaction mechanism for complex biochemical reactions"
- 5. Mathematical Analysis of Metabolic Networks. Mathematical Interdisciplinary Research Day (MIR@W Day), Mathematics Institute, University of Warwick, June 2nd, 2003, "Transient kinetics consequences in the reduced description of biochemical networks: The application of the quasi-steady-state approximation to an open enzymatic reaction"
- 6. Modelling Cellular Function, Auckland, New Zealand, June 14th-18th, 2003, "Biochemical reaction kinetics in non-homogeneous media: Simulations and rate laws"
- 7. Annual Meeting of the Society for Mathematical Biology, University of Dundee, August 6-9th, 2003, "The best contender models for somitogenesis"
- VIII Venezuelan Congress of Hematology, Venezuelan Society of Hematology, Radisson Eurobuilding Hotel, Caracas, Venezuela, June 23-26th, 2005, "Proyecto Genoma Humano: Clonación Terapéutica y Reproductiva", "Factores de regulación de células hematopoyéticas protenitoras y sanguineas" and "Uso de la genética en tratamiento de hemofilia" (plenary speaker)
- Biocomplexity VIII: Application of methods of stochastic systems and statistical physics in biology, The Interdisciplinary Center for the Study of Biocomplexity, University of Notre Dame, October 28-30th, 2005, "Lesson from the computational modelling of reactions in intracellular environments"
- 10. Workshop (close door): The Intracellular Environment, Cold Spring Harbor Laboratory, Banbury Center, November 13th-16th, 2005, "Stochastic and deterministic kinetics for modelling of reactions in intracellular environments with macromolecular crowding"
- Conference on the 10th Anniversary of the Bioethical Committee, Hospital Universitario de Caracas, Universidad Central de Venezuela, November 14-17th, 2005, "Es humano tu clon" (plenary speaker) and "Aspectos éticos normativos y éticos del uso de embriones preimplantanción"
- 12. 55th Annual Convention of the Venezuelan Association for the Advancement of Science, Universidad Central de Venezuela, Caracas, Venezuela, November 21-26th, 2005, "Unravelling the nature of the segmentation clock" (**plenary speaker**)
- 13. Join06, JOrnadas de INformática, Universidad do Minho, Braga, Portugal April 5-7th, 2006, "How can a systems biologist build up a clock?" (plenary speaker)
- 14. Joint Annual Meeting of The Society of Mathematical Biology and SIAM Conference on the Life Sciences, North Carolina State University, Raleigh, North Carolina, USA, July 31-August 4th, 2006, "The apparent first-order kinetics of the substrate disappearance in enzyme digestion"
- 15. Joint Annual Meetings of the Society for Mathematical Biology and the Japanese Society for Mathematical Biology, San Jose, California, USA, July 31-August 4rd, 2007, "The dynamics of reaction pathways in intracellular conditions"
- 16. Biomedical Engineering Society Annual Fall Meeting, Los Angeles, California, USA, September 26-29th, 2007, "Multiscale models of vertebrate Segmentation" and "Reconstruction of biochemical reaction mechanisms and pathways from time series and steady state data"
- 17. Annual Meeting of the Society for Mathematical Biology, Toronto, Canada, July 30th-August 2nd, 2008, "A model of endoplasmic reticulum stress in pancreatic β-cells"
- 18. Dynamical Systems in physiological modeling, Purdue University, October 11th-13th, 2008, "A models of the unfolded protein response in β-cells"
- 19. Mathematical Challenges in Developmental Biology. Workshop 3: Morphogenesis, Limb Growth, Gastrulation, Somitogenesis and Neural Tube Development, Mathematical Bioscience Institute, Ohio State University, November 17th-21st, 2008, "Investigating two mechanisms of neural crest migration"
- Transatlantic Strategic Workshop (closed-door): Cancer Systems Biology, Rostock-Warnemünde , Germany, June 8th-11th, 2009, "SWOT Analysis for Modelling Sub-cellular Processes"

- International Conference on Mathematical Biology and Annual Meeting of the Society of Mathematical Biology, University of British Columbia, Vancouver, Canada, July 27th-30th, 2009, "How is protein load sensed in the endoplasmic reticulum?"
- 22. Systems Biology Symposium: Celebrating the Diversity of Contemporary Integrative Biology. University of Michigan, Ann Arbor, Michigan, USA, December 1st, 2009, "New insights into Protein Homeostasis Mechanism in the Endoplasmic Reticulum Lumen"
- 23. The Fifth Annual Symposium on Predictive Health: Human Health Molecules to Man. The Emory/Georgia Tech Predictive Health Institute, Atlanta, Georgia, USA, December 14th-15th, 2009, "Metabolism and personalize medicine: Can computational systems biology make all the difference?"(plenary speaker)
- 24. 2010 Annual Meeting of the Society for Mathematical Biology and 10th International Symposium on Mathematical and Computational Biology (Biomat 2010), Rio de Janeiro, Brazil 24-29th July, 2010, "Stability of open pathways"
- 25. 11th International Conference On Systems Biology (ICSB 2010), Edinburgh, Scotland, UK, October 10-16th, 2010, "Identification of aggregation reaction conditions associated with toxic aggregation thresholds found in conformational diseases"
- 26. 8th European Conference on Mathematical and Theoretical Biology, and Annual Meeting of the Society for Mathematical Biology, Krakow, Poland, June 28th-July 2nd, 2011, "A model of threshold behavior reveals rescue mechanisms of bystander proteins in conformational diseases"
- BIOMATH 2012 International Conference on Mathematical Methods and Models in Biosciences, Sofia, Bulgaria, June 17th-22nd, 2012, "A model of chaperone overload in aging organism" (plenary speaker)
- The Teratology Society, 52nd Annual Meeting "Global Perspectives in Teratology", Baltimore, Maryland, USA, June 23rd-27th, 2012, "How does computational modeling reveal mechanisms of cell chain migration?" (Wiley Blackwell lecturer)
- 29. Blackwell-Tapia Conference 2012, Institute for Computational and Experimental Research in Mathematics (ICERM), Brown University, Providence, Rhode Island, USA, November 9-10, 2012, "How a dynamical model can predict phenotype from genotype?"
- 30. 13th International Symposium on Mathematical and Computational Biology, The Fields Institute, Toronto, Ontario, Canada, November, 4th-8th, 2013, "Modeling dominant protein interactions that influence the pathogenesis of protein folding diseases" (plenary speaker)
- 31. The Biophysical Society 58th Annual Meeting, Cellular Stress, Protein Folding, and Disease Symposium, February 15-19th, 2014, "Protein interactions and transition times that influence the pathogenesis of protein folding diseases"
- Workshop on Diabetes Systems Biology, Fields Institute, Toronto, Canada, March 24-26th, 2014, "A comprehensive data analysis reveals that pancreatic β-cells net growth is population densitydependent throughout the lifespan of rats"
- 33. Current Topics Workshop: Molecular to Systems Physiology, Mathematical Bioscience Institute, Ohio State University, Ohio, USA, May 5-9th, 2014, "On the mechanism of sensing unfolded protein in the endoplasmic reticulum"
- 34. Emphasis Workshop: Targeting Cancer Cell Proliferation and Metabolism Networks, Mathematical Bioscience Institute, Ohio State University, Ohio, USA, March 23-27th, 2015, "Reverse engineering signaling pathway in cancer cells: Effects of honokiol on the notch signaling pathway as a case study"
- 35. Emphasis Workshop: Dynamics in Networks with Special Properties, Mathematical Bioscience Institute, Ohio State University, Ohio, USA, January 25-29th, 2016, "Network motifs provide signatures that characterize metabolism of cellular organelles"
- 36. 10th European Conference in Mathematical and Theoretical Biology, and Annual Meeting of the Society for Mathematical Biology, University of Nottingham, UK, July 11-15th, 2016, "Villification of the Turing reaction-diffusion model"

- 37. A3-NIMS Joint Workshop on Interdisciplinary Research Connecting Mathematics and Biology, Center for Applications of Mathematical Principles, National Institute for Mathematical Sciences, Daejeon, Korea, May 12-14th, 2017, "Challenges in measuring kinetic parameter of enzyme catalyzed reaction" (plenary speaker)
- World Metrology Day Symposium, Joint Initiative for Metrology in Biology, National Institute of Standards and Technology and Stanford University, May 22nd, 2017, "Standards for Reporting Enzymology Data (STRENDA)"
- 39. 2017 Annual Meeting of the Society for Mathematical Biology, University of Utah, Salt Lake City, Utah, USA, July 17-20th, 2016, "Education SubGroup Symposium: Teaching modeling and simulation using MATLAB: Case studies in systems biology and pharmacology"
- 2017 Beilstein Enzymology Symposium "Enzymes in Transformation and Signalling", Rüdesheim, Germany, September 19-21, 2017, "Designing Enzyme Assays for the Accurate Measurement of Enzyme Kinetic Parameters" (plenary speaker)
- 41. Centre Européen de Calcul Atomique et Moléculaire (CECAM) Wrokshop "Proteins in realistic environments: simulation meets experiment", CECAM-DE-SMSM, University of Stuttgart, 23-25th, 2018, "Exploring standardized protocols to measure and estimate enzyme kinetic parameters" (plenary speaker)
- 42. 2018 Beilstein Bozen Symposium "Information and Noise: Chemistry, Biology and Evolution. Creating Complex Systems", Rüdesheim, Germany, June 5-7th, 2018, "Macromolecular crowding is an important organizing principle for chemical catalysis inside biomolecular condensates" (**plenary speaker**)
- 43. 2018 Fall ACS Meeting, Symposia "Reporting & Reproducibility of Chemistry Research Data", Boston, USA, August 19-25th, 2018, "Better reporting for better measurements: Enzyme kinetics as a case study"
- 44. Workshop 1010: The Maths of Biology, Institut Mittag-Leffler, Swedish Academy of Science, Djurshold, Sweden, October 8-12th, 2018, "How to design an optimal sensor network for the unfolded protein response"
- 45. 2019 Beilstein Enzymology Symposium "Molecular Functions, Catalysis and Regulation", Rüdesheim, Germany, September 10-12th, 2019, "The uncertainty of the Michaelis constant, K_M, in experimental reproducible enzyme kinetic public data"
- 46. On growth and pattern formation: A celebration of Philip Maini's 60th birthday, University of Oxford, UK, September 18-19th, 2019, "Better mathematical models for better measurements: Enzyme kinetics as a case study"
- 47. 2019 Leadership Retreat, Association of Chairs of Departments of Physiology, Hotel Casa Santo Domingo, Antigua, Guatemala, December 6th, 2019, "Reproduciblity is a scientific challenge not a scientific crisis".
- 48. Physiology Updates for Physicians in Training, Universidad Francisco Marroquin Medical School, Ciudad de Guatemala, Guatemala, December 6th, 2019, "Measurement in Life Sciences and Medicine: Thinking Quantitatively in the Biomedical Sciences".
- 49. 20th International Symposium on Mathematical and Computational Biology, Falconara Marittima, Region of Marche, Province of Ancona, Italy (held virtually due to COVID-19 pandemic), November, 1st-7th, 2020, "Developing models for the accurate measurement of enzyme kinetic parameters" (plenary speaker)

Extramural seminars

- 1. Instituto Venezolano de Investigaciones Científicas, Physics Center, Physics Seminars, November 6th, 1997, "Enzyme kinetics à la Leonahrd Euler"
- University of Auckland, Auckland, New Zealand, Bioengineering Institute Colloquium, July 23th, 2003, "Transient kinetics consequences in the reduced description of biochemical networks: The application of the quasi-steady-state approximation to an open enzymatic reaction"

- Indiana University, Biocomplexity Colloquium, Department of Physics, December 1st, 2003, "Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws"
- 4. Rutgers University, DIMACS/BIOMAPS Seminar Series on Quantitative Biology and Epidemiology, February 5th, 2004, "Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws"
- 5. Rutgers University, Mathematical Colloquium, Department of Mathematics, February 6th, 2004, "The quasi-steady-state approximation in enzyme kinetics"
- 6. University of Warwick, Warwick Systems Biology Center Seminars, May 18th, 2004, "What are the kinetic laws that describe intracellular reactions"
- 7. Purdue University, Weldon School of Biomedical Engineering, Biomedical Engineering Seminars, September 21st, 2005, "Formation of vertebral precursors"
- 8. Purdue University, Bioinformatics Seminars, Department of Statistics, October 18th, 2005, "Unraveling the nature of the segmentation clock"
- 9. Instituto Gulbenkian de Ciência, Oeiras, Portugal, IGC Seminars, April 10th, 2006, "A clock and wavefront mechanism for somite formation"
- 10. Purdue University, School of Chemical Engineering, Chemical Engineering Colloquium, November 14th, 2006, "Systems biology and biochemistry"
- 11. Kalamazoo College, Complex Systems Colloquium, December 6th, 2006, "Unraveling the nature of the segmentation clock" (distinguish speaker)
- 12. Northwestern University, Engineering Science and Applied Mathematics Department, ESAM Colloquium, January 16th, 2007, "Enzyme reactions within the cells"
- Iowa State University, Mathematical Biology Seminars, February 7th, 2007, "Enzyme reactions within cells"
- 14. University of Michigan Medical School, Center for Computational Medicine & Biology, CCMB Seminars, April 25th, 2007, "Rate laws and mechanisms discovery within cells"
- 15. University of Michigan Medical School, Molecular & Integrative Physiology Colloquium, June 4th, 2007, "Modelling signaling gradients in development"
- 16. University of Michigan, Department of Mathematics, Applied and Interdisciplinary Mathematics Seminars, September 14th, 2007, "How do cells form rounded segments?"
- 17. Georgia Institute of Technology, Integrative Systems Biology Institute, Distinguish Seminar Series, April 8th, 2009, "Modeling reactions 'the right way' inside the cells" (**distinguish speaker**)
- 18. University of Connecticut Health Center, Center for Cell Analysis and Modeling, CCAM Seminars, May 13th, 2009, "How is protein load sensed in the endoplasmic reticulum?"
- 19. Instituto Gulbenkian de Ciência, Oeiras, Portugal, IGC Seminars, July 2nd, 2009, "How is protein load sensed in the endoplasmic reticulum?"
- 20. Universitat de Barcelona, The Catalonian Reference Network on Theoretical and Computational Chemistry, December 10th, 2009, "Modelling reactions inside the cells"
- 21. Univeridad Autónoma de Barcelona, The Catalonian Reference Network on Theoretical and Computational Chemistry, Spain, December 11th, 2009, "Modelando reacciones dentro de las células"
- 22. Centre for Mathematical Medicine Seminars, Centre for Mathematical Medicine, Fields Institute, Toronto, Canada, February 20th, 2010, "How is protein load sensed in the endoplasmic reticulum?"
- 23. Minority Access to Research Career Program, University of Arizona, Tucson, September 27th, 2010, "Modeling reactions inside the cell"
- 24. Department of Chemistry and Biochemistry, University of Lethbridge, Canada, November 30th, 2010, "How is protein load sensed in the endoplasmic reticulum?"

- 25. Department of Applied and Computational Mathematics and Statistics Colloquium, University of Notre Dame, USA, April 18th, 2011, "A model of threshold behavior reveals rescue mechanisms of bystander proteins in conformational diseases"
- 26. Department of Electric and Computing Engineering Seminars, University of Texas, San Antonio, Texas, USA, April 27th, 2012, "Computational modeling of cell chain migration reveals mechanisms that sustain follow-the-leader behavior"
- Computer Science and Engineering Lecture Series 2011-2012, Michigan State University, East Lansing, Michigan, USA, October 26th, 2012, "A reactor model of endoplasmic reticulum to investigate protein folding diseases"
- Department of Computer Science and Mathematical Institute, Computational Biology Seminars, Trinity Term 2013, University of Oxford, May 17th, 2013, "How a dynamical model can predict phenotype from genotype".
- Stowers Institute for Medical Research, Developmental Biology Seminars, Kansas City, Missouri, August 15th, 2013, "Investigating developmental mechanisms with agent-based models"
- Department of Mathematics and Statistics, Mathematics Colloquium, Georgia State University, Atlanta, Georgia, September 23rd, 2013, "How a dynamical model can predict phenotype from genotype".
- 31. Mathematical Bioscience Institute, Colloquium, Ohio State University, Columbus Ohio, January 27th, 2014, "Modeling dominant protein interactions that influence the pathogenesis of protein folding diseases"
- 32. Department of Physiology, McGill University, Montreal, Canada, March 21st, 2014, "How a dynamical model can predict phenotype from genotype: Mutant INS-gene Induced Diabetes of Youth as a case study."
- 33. The New Mexico Center for the Spatiotemporal Modeling of Cell Signaling, University of New Mexico, Albuquerque, New Mexico, April 14th, 2014, "Investigating proinsulin cross dimerization to rescue insulin production in a model of diabetes of youth"
- 34. Center for Nonlinear Studies, q-Bio Seminar Series, Los Alamos National Laboratory, Los Alamos, New Mexico, April 15th, 2014, "Modeling protein processing in pathogenesis of protein folding diseases exhibiting threshold phenomenon"
- 35. Computational Biology Program Seminars, Sloan Kettering Cancer Center, New York City, New York, December 4th, 2014, "How to reverse engineer the intracellular signal transduction circuitry of cancer cells"
- 36. Mathematical Biology Seminars, Department of Mathematics, University of Utah, Salt Lake City, Utah, March 4th, 2015, "Investigating the modulation of Drosophila aging by linking sexual perception and reward"
- 37. Science at the Edge, Quantitative Biology, Gene Expression in Development & Disease Seminar, Michigan State University, East Lansing, Michigan, September 11th, 2015, "Sex, reward or death (in flies)"
- 38. Mathematics Colloquium, Department of Mathematics, University of Texas at Arlington, Arlington, Texas, October 2nd, 2015, "Modeling dominant protein interactions that influence the pathogenesis of protein folding diseases"
- 39. Mathematical Bioscience Institute Colloquium, The Ohio State University, Columbus, Ohio, USA, December 7th, 2015, "The long road to reproducibility in biomedical sciences also requires mathematical models"
- 40. Department of Chemistry & Biochemistry Seminars, The Ohio State University, Columbus, Ohio, USA, February 17th, 2016, "Chemical kinetics for reproducible research to combat protein aggregation diseases"
- 41. Department of Biochemistry & Molecular Biology Seminars, St. Louis University Medical School, St. Louis, Missouri, USA, October 10th, 2016, "Challenges in the reproducibility of kinetic parameter estimates for enzyme catalyzed reactions"

- 42. Centre for Mathematical Medicine Seminars, Fields Institute, Toronto, Canada, November 23rd, 2016, "The inverse problem is crucial for the design of quantitative experiments in drug development"
- 43. Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA, March 2nd, 2017, "Villification in the mouse: Coordination of signals and mechanical forces control intestinal villus patterning?" (eminent speaker)
- 44. Centre for Mathematical Medicine Seminars, Fields Institute, Toronto, Canada, February 28th, 2018, "Theory of the reactant-stationary kinetics for a coupled enzyme assay"
- 45. Department of Biomedical Engineering Seminars, Purdue University, West Lafayette, Indiana, USA, November 6th and 7th, 2018, "Is there a reliability crisis in systems biology?" and "Exploring treatments for conformational diseases using Ockham's razor" (distinguished seminar speaker).
- 46. Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA, March 18th, 2019, "Are we measuring biochemical systems with rigor?"
- 47. Department of Biomedical Informatics Seminar, Ohio State University College of Medicine, August 30th, 2019, "The uncertainty of the Michaelis constant, K_M, in experimental reproducible enzyme kinetic public data"
- 48. Department of Mathematics Colloquium, Florida State University, October 4th, 2019, "Analyzing the validity of scaling analysis and simplifications for better measurements of biochemical reactions"
- 49. Interdisciplinary Training in Complex Networks and Systems, Indiana University, November 1st, 2019, "Is the publicly available data of physical-chemistry constants reliable to build large network models?" (*Eminent lecture*)
- 50. Department of Applied Mathematics Colloquium, University of Western Ontario, December 11th, 2019, "Scaling analysis and simplifications for better measurements of enzyme catalyzed reactions"
- 51. Mathematical and Computational Biology Seminar Series, University of Massachusetts Amherst, July 27th, 2020, "Developing models for the accurate measurement of enzyme kinetic parameters"
- 52. Physiology Hot Summer Seminar Series, Louisiana State University Health Sciences Center, New Orleans, August 13th, 2020, "Gaining insights into the proteostasis networks with mathematical models"
- 53. Department of Pharmacology and Physiology Seminar Series, Saint Louis University School of Medicine, October 1st, 2020, "Exploring treatments for protein folding diseases using a systems biology approach"
- 54. Laboratory of Cellular & Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, February 11th, 2021, "Villification in the mouse: Coordination of signals and mechanical forces control intestinal villus patterning?"
- 55. Bioscience Seminars, University of Texas El Paso, College of Science, March 13th, 2021, "Sensing mechanisms and regulation of proteostasis: A modeling approach"

Intramural seminars

- 1. University of Oxford, Mathematical Institute, Mathematical Biology and Ecology Seminars, February 19th, 1999, "The new enzyme kinetics"
- University of Oxford, CABDyN Complexity Centre, CABDyN Seminars, November 11th, 2003, "An agent-based model simulation to discover the kinetic properties of biochemical reactions in *in vivo* conditions"
- 3. Indiana University, Biocomplexity Institute, Biocomplexity Seminars, September 7th, 2004, "Uses and abuses of the pseudo-first order kinetics in single molecular enzymology"

- 4. Indiana University, School of Library and Informatics Science, Network and Complex Systems Seminars, November, 15th, 2004, "Unraveling the biochemical reaction kinetics from time-series data".
- Indiana University, Institute for Scientific Computing and Applied Mathematics, September 6th, 2006, "A century of enzyme kinetics: On how scaling has been used in chemical kinetics"
- University of Michigan Medical School, Center for Computational Medicine & Biology, Tools & Technology Seminars, June 5th, 2008, "XPP/AUTO: A tool for solving differential equations in computational biology"
- 7. University of Michigan, Department of Mathematics, Mathematical Biology Seminars, January 19th, 2009, "Model of the Unfolded Protein Response Pancreatic β- cell as a case study"
- 8. University of Michigan Medical School, Center for Computational Medicine & Bioinformatics, November 10th, 2010, "Models of beta-cell turnover during development"
- 9. University of Michigan, Quantitative Biology Seminars, March 12th, 2012, "Computational modeling of cell chain migration reveals mechanisms that sustain follow-the-leader behavior"
- 10. University of Michigan, Applied Mathematics Seminars, October 5th, 2012, "A model of chaperone overload capacity in protein folding diseases"
- 11. University of Michigan, Protein Folding Disease Seminars, January 9th, 2014, "Modeling protein processing and aggregation: Insulin as a case study"
- 12. University of Michigan, Computational Medicine & Bioinformatics Seminars, April 8th, 2015, "Investigating the effects of macromolecular crowding on reaction kinetics, protein aggregation and cell physiology"
- 13. Symposium on Computational Discovery in Complex Systems Biology, University of Michigan Center for Systems Biology, Center for the Study of Complex Systems, and Michigan Institute for Computational Discovery and Engineering, September 22nd, 2015, "On sex, reward or death (in flies)"
- 14. University of Michigan Medical School, Department of Internal Medicine, Metabolism, Endocrinology & Diabetes Division, Research Conference, November 13th, 2015, "Using mathematical and computational models to explore hypotheses in the biomedical sciences"
- 15. University of Michigan Biophysics Symposium, April 18th, 2016, "The long road to reproducibility requires deriving good approximations"
- 16. University of Michigan Medical School, Department of Computational Medicine & Biology, Tools & Technology Seminars, November 7th, 2017, "Disorder Atlas: A tool for standardizing intrinsic disorder calculations"

Bibliography

Original peer-reviewed publications

- 1. R. Villegas, C. Castillo, M. E. Póo, **S. Schnell**, C. Piernavieja, D. Balbi and G. M. Villegas (1994). Expression of sodium channels with different saxitoxin affinity during rat forebrain development. *Developmental Brain Research* **81**, 26-40.
- 2. **S. Schnell** and C. Mendoza (1997). Enzymological considerations for a theoretical description of the Quantitative Competitive Polymerase Chain Reaction (QC-PCR). *Journal of theoretical Biology* **184**, 433-440.
- 3. **S. Schnell** and C. Mendoza (1997). A closed-form solution for time-dependent enzyme kinetic. *Journal of theoretical Biology* **187**, 207-212.
- 4. **S. Schnell** and C. Mendoza (1997). Theoretical description for polymerase chain reaction. *Journal of theoretical Biology* **188**, 313-318.
- 5. S. Schnell and C. Mendoza (2000). A formula for integrating inverse functions. *The Mathematical Gazette* **84**, 103-104.
- 6. **S. Schnell** and C. Mendoza (2000). Time-dependent closed form solution for fully competitive enzyme kinetics. *Bulletin of Mathematical Biology* **62**, 321-336.

- 7. S. Schnell and P. K. Maini (2000). Clock and induction model for somitogenesis. *Developmental Dynamics* 217, 415-420.
- 8. S. Schnell and P. K. Maini (2000). Enzyme kinetics at high enzyme concentration. *Bulletin of Mathematical Biology* **62**, 483-499.
- 9. S. Schnell and C. Mendoza (2000). Enzyme kinetics of multiple alternative substrates. *Journal of Mathematical Chemistry* 27, 155-170.
- J. R. Collier, D. McInerney, S. Schnell, P. K. Maini, D. J. Gavaghan, P. Houston and C. D. Stern (2000). A cell cycle model for somitogenesis: mathematical formulation and numerical simulation. *Journal of theoretical Biology* 207, 305-316.
- 11. S. Schnell and C. Mendoza (2001). A fast method to estimate kinetic constants for enzyme inhibitors. *Acta Biotheoretica* **49**, 109-113.
- 12. **S. Schnell** and P. K. Maini (2002). Enzyme kinetics far from quasi-steady-state and equilibrium approximations. *Mathematical and Computer Modelling* **35**, 137-144.
- 13. S. Schnell, P. K. Maini, D. McInerney, D. J. Gavaghan and P. Houston (2002). Models for pattern formation in somitogenesis: a marriage of cellular and molecular biology. *Comptes Rendus Biologies* **325**, 179-189.
- 14. R. Baker, **S. Schnell** and P. K. Maini (2003). Formation of vertebral precursors: Past Models and Future Predictions. *Journal of Theoretical Medicine* **5**, 23-35.
- 15. **S. Schnell** and C. Mendoza (2004). The condition for pseudo-first-order kinetics to be valid in transient-phase studies of enzymatic reactions is independent of the initial enzyme concentration. *Biophysical Chemistry* **107**, 165-174.
- 16. D. McInerney, S. Schnell, R. E. Baker and P. K. Maini (2004). A mathematical formulation for the cell cycle model in somitogenesis: analysis, parameter constraints and numerical solutions. *Mathematical Medicine and Biology A Journal of the IMA* 21, 85-113.
- 17. S. Schnell and T. E. Turner (2004). Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. *Progress in Biophysics and Molecular Biology* **85**, 235-260.
- R. Hinch and S. Schnell (2004). Mechanism equivalence in enzyme-substrate reactions: Distributed differential delay in enzyme kinetics. *Journal of Mathematical Chemistry* 35, 253-264.
- 19. E. J. Crampin, P. McSharry and S. Schnell (2004). Extracting biochemical reaction kinetics from time series data. *Lecture Notes in Artificial Intelligence* **3214**, 329-336.
- 20. S. Schnell, M. J. Chappell, N. D. Evans and M. R. Roussel (2006). The mechanism distinguishability problem in biochemical kinetics: The single-enzyme, single-substrate reaction as a case study. *Comptes Rendus Biologies* **329**, 51-61.³
- B. Ribba, T. Collin and S. Schnell (2006). A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. *Theoretical Biology and Medical Modelling* 3, 7. PMCID: PMC1388194
- 22. R. E. Baker, **S. Schnell** and P. K. Maini (2006). A mathematical investigation of a clock and wavefront model for somitogenesis. *Journal of Mathematical Biology* **52**, 458-482.
- 23. R. E. Baker, S. Schnell and P. K. Maini (2006). A clock and wavefront mechanism for somite formation. *Developmental Biology* 293, 116-126.
- 24. J. Srividhya and S. Schnell (2006). Why substrate depletion has apparent first-order kinetics in enzymatic digestion. *Computational Biology & Chemistry* **30**, 209-214.
- 25. R. Grima and S. Schnell (2006). How reaction kinetics with time-dependent rate coefficients differs from generalized mass action. *ChemPhysChem* 7, 1422-1424.

³ This article introduces a solution to the long-standing problem posed in the fundamental dogma of chemical kinetics, which was first described by Victor Henri in 1901. The French Academic of Science re-printed Henri's paper as a facsimile of the article in *Comptes Rendus Biologies* 329, 47-50.

- 26. E. H. Flach and **S. Schnell** (2006). Use and abuse of the quasi-steady-state approximation. *IEE Proceedings Systems Biology* **153**, 187-191. PMCID: PMC2265107
- 27. S. Roy, S. Schnell and P. Radivojac (2006). Unraveling the nature of the segmentation clock: Intrinsic disorder of clock proteins and their interaction map. *Computational Biology & Chemistry* 30, 241-248. PMCID: PMC1992444
- 28. R. Grima and S. Schnell (2006). A systematic investigation of the rate laws valid in intracellular environments. *Biophysical Chemistry* **124**, 1-10.
- 29. S. Schnell and S. M. Hanson (2007). A test for measuring the effects of enzyme inactivation. *Biophysical Chemistry* 125, 269-274.
- 30. J. Srividhya, M. S. Gopinathan and S. Schnell (2007). The effects of time delays in a phosphorylation-dephosphorylation pathway. *Biophysical Chemistry* **125**, 286-297.
- 31. J. Srividhya, E. J. Crampin, P. E. McSharry and S. Schnell (2007). Reconstructing biochemical pathways from time course data. *Proteomics* 7, 828-838.⁴
- 32. S. Schnell, S. Fortunato and S. Roy (2007). Is the intrinsic disorder of proteins the cause of the scale-free architecture of protein-protein interaction networks? *Proteomics* 7, 961-964.
- 33. R. Grima and S. Schnell (2007). A mesoscopic simulation approach for modeling intracellular reactions. *Journal of Statistical Physics* 128, 139-164.
- 34. E. H. Flach, **S. Schnell** and J. Norbury (2007). Turing pattern outside of the Turing domain. *Applied Mathematics Letters* **20**, 959-963. PMCID: PMC2084364
- 35. R. Grima and S. Schnell (2007). Can tissue surface tension drive somite formation? *Developmental Biology* **307**, 248-257. PMCID: PMC1992446
- 36. E. H. Flach, **S. Schnell** and J. Norbury (2007). Limit cycles in the presence of convection, travelling wave analysis. *Physical Review E* **76**, 036216.⁵ PMCID: PMC2211270
- 37. E. H. Flach, **S. Schnell** and J. Norbury (2008). Limit cycles in the presence of convection, a first order analysis. *Journal of Mathematical Chemistry* **43**, 101-110.
- 38. C. Mendoza, L. S. Rodriguez, F. Ruette and **S. Schnell** (2008). Formation of monocarboxylic acids and polyols on a graphitic surface. *Surface Science* **602**, 1053-1060.
- 39. S. M Hanson, S. Schnell (2008). The reactant stationary approximation in enzyme kinetics. *The Journal of Physical Chemistry A* 112, 8654-8658.
- J. A. Glazier, Y. Zhang, M. Swat, B. Zaitlen and S. Schnell (2008). Coordinated action of N-CAM, N-cadherin, EphA4 and ephrinB2 translates genetic prepatterns into structures during somitogenesis in chick. *Current Topics in Developmental Biology* 81, 205-247. PMCID: PMC2556964
- 41. **S. Schnell** (2009). A model of the unfolded protein response: Pancreatic β-cell as a case study. *Cellular Physiology & Biochemistry* **23**, 233-244.
- R. E. Baker, S. Schnell and P. K. Maini (2009). Waves and patterning in developmental biology: Vertebrate segmentation and feather bud formation as case studies. *International Journal of Developmental Biology* 53, 783-794. PMCID: PMC4188424
- 43. J. Srividhya, M. A. Mourão, E. J. Crampin and S. Schnell (2010). Enzyme catalyzed reactions: from experiments to computational mechanism reconstruction. *Computational Biology & Chemistry* 34, 11-18.
- 44. E. H. Flach and **S. Schnell** (2010). Stability of open pathways. *Mathematical Biosciences* **228**, 147-152. PMCID: PMC3004284
- 45. L. Zheng, S. Papagerakis, S. Schnell, W. A. Hoogerwerf and P. Papagerakis (2011). Expression of clock proteins in developing tooth. *Gene Expression Patterns* 11, 202-206. PMCID: PMC3073654

⁴ This paper was selected feature article "In this issue" by a panel of editors and reviewers. It was also selected for the Proteomics podcast, March 2007

⁵ Paper selected for the October 1, 2007 issue of Virtual Journal of Biological Physics Research by an expert panel

- C. I. Sandefur and S. Schnell (2011). A model of threshold behavior reveals rescue mechanisms of bystander proteins in conformational diseases. *Biophysical Journal* 100, 1864-1873. (cover article)⁶ PMCID: PMC3077688
- 47. M. A. Mourão, S. Schnell* and S. L. Shaw* (2011). Macroscopic simulations of microtubule dynamics predict two steady-state processes governing array morphology. *Computational Biology* & *Chemistry* **35**, 269-281.
- M. A. Mourão, J. Srividhya, Edmund Crampin, Patrick McSharry and S. Schnell (2011). A graphical user interface for a method to infer kinetics and network architecture (MIKANA). *PLoS ONE* 6, e27534. PMCID: PMC3214083
- M. Athanassiou-Papaefthymiou, D. Kim, L. Harbon, S. Papagerakis, S. Schnell, H. Harada, P. Papagerakis (2011). Molecular and circadian controls of ameloblasts. *European Journal of Oral Science* 119 (Suppl. 1), 35-40. PMCID: PMC3516856
- 50. M. L. Wynn, P. Kulesa* and S. Schnell* (2012). Computational modeling of collective cell migration reveals mechanisms that sustain follow-the-leader chain behavior. *Journal of the Royal Society Interface* 9, 1576-1588. PMCID: PMC3367809
- 51. K. D. Walton, Å. Kolterudac, M. J. Czerwinskia, M. Bell, A. Prakasha, J. Kushwaha, A. S. Grosse, S. Schnell and D. L. Gumucio (2012). Hedgehog-responsive mesenchymal clusters direct patterning and emergence of intestinal villi. *Proceedings of the National Academy of Sciences of United States of America* 109, 15817-15822.⁷ PMCID: PMC3465418
- E. R. Shellman, C.F. Burant and S. Schnell (2013). Network motifs provide signatures that characterize metabolism. *Molecular BioSystems* 9, 352-360. (cover article)⁸ PMCID: PMC3619197
- 53. E. H. Flach, J. Norbury and **S. Schnell** (2013). More than skew: asymmetric wave propagation in a reaction-diffusion-convection system. *Biomath* **2**, 201303027.
- L. Zheng, Y. J. Seon, M. A. Mourão, S. Schnell, D. Kim, H. Harada, S. Papagerakis and P. Papagerakis (2013). Circadian rhythms regulate amelogenesis. *Bone* 55, 158–165. PMCID: PMC3650122
- M. L. Wynn, P. Rupp, P. A. Trainor, S. Schnell* and P M. Kulesa* (2013). Follow-the-leader cell migration requires biased cell–cell contact and local microenvironmental signals. *Physical Biology* 10, 035003. PMCID: PMC3756809
- Y. K. Wang, D. G. Hurley, S. Schnell, C. G. Print and E. J Crampin (2013). Integration of steadystate and temporal gene expression data for the inference of gene regulatory networks. *PLoS ONE* 8, e72103. PMCID: PMC3743784
- M. Mourão, D. Kreitman and S. Schnell (2014). Unravelling the impact of obstacles in diffusion and kinetics of an enzyme catalysed reaction. *Physical Chemistry Chemical Physics* 16, 4492-4503. (cover article)⁹
- M. Mourão, L. Satin and S. Schnell (2014). Optimal experimental design to estimate statistically significant periods of oscillations in time course data. *PLoS ONE* 9, e93826. PMCID: PMC3974819
- 59. M. Whidden, A. Ho, M. I. Ivanova and S. Schnell (2014). Competitive reaction mechanisms for the two-step model of protein aggregation. *Biophysical Chemistry* **193-194**, 9-19.
- M. L. Wynn, N. Consul, S. D. Meravjer and S. Schnell (2014). Inferring the effects of Honokiol on the Notch signaling pathway in SW480 colon cancer cells. *Cancer Informatics* Suppl. 5, 1-12. PMCID: PMC4218690

⁶ Cover article for Volume 100, Issue 8, April 20th, 2011.

⁷ Selected as Editor's Choice in Science Signaling: W. Wong, Patterning Villi. Sci. Signal. 5, ec256 (2012).

Reviewed in F1000 Prime DOI: 10.3410/f.718028677.793481633

⁸ Cover article (front inside) for Volume 9, Issue 3, March 2013.

⁹ Cover article (front outside) for Volume 16, Issue 10, 14th March 2014.

- M. Vincent, M. Whidden and S. Schnell (2014). Surveying the floodgates: Estimating protein flux into the endoplasmic reticulum lumen. *Frontiers in Physiology* 5, 444. PMCID: PMC4230051
- 62. E. R. Shellman, Y. Chen, X. Lin, C.F. Burant* and **S. Schnell*** (2014). Metabolic network motifs can provide novel insights into evolution: The evolutionary origin of Eukaryotic organelles as a case study. *Computational Biology & Chemistry* **53**, 242-250. PMCID: PMC4254655
- M. Jaberi-Douraki, S. Schnell, M. Pietropaolo and A. Khadra (2015). Unraveling the contributions of pancreatic beta-cell suicide in autoimmune type 1 diabetes. *Journal of theoretical Biology* 375, 77–87. PMCID: PMC4232492
- B. Wang, S. A. Merillat, M. Vincent, A. K. Huber, V. Basrur, D. Mangelberger, L Zeng, K. Elenitoba-Johnson, R. A. Miller, D. N. Irani, A. A. Dlugosz, S. Schnell, K. M. Scaglione and H. L. Paulson (2016). Loss of the Ubiquitin-conjugating Enzyme Ube2W results in susceptibility to early postnatal lethality and defects in skin, immune and male reproductive systems. *Journal of Biological Chemistry* 291, 3030-3042. PMCID: PMC4742764
- 65. K. D. Walton, M. Whidden, Å. Kolterud, S. K. Shoffner, M. J. Czerwinski, J. Kushwaha, N. Parmar, D. Chandhrasekhar, A. M. Freddo, S. Schnell and D. L. Gumucio (2016). Villification in the mouse: Bmp signals control intestinal villus patterning. *Development* 143, 427-436. PMCID: PMC4760312
- 66. Z. M. Harvanek, M. A. Mourão, **S. Schnell** and S. D. Pletcher (2016). A computational approach to studying ageing at the individual level. *Proceedings of the Royal Society B* **283**, 20152346. PMCID: PMC4760160
- M. Vincent, M. Whidden and S. Schnell (2016). Quantitative proteome-based guidelines for protein disorder characterization. *Biophysical Chemistry* 213, 6-16. [Preprint *bioRxiv* DOI: 10.1101/032847]
- M. Vincent and S. Schnell (2016). A collection of intrinsic disorder characterizations from eukaryotic proteomes. *Scientific Data* 3, 160045. PMCID: PMC4915274 [Data available at *Dryad* DOI: 10.5061/dryad.sm107]
- 69. M L. Wynn, J. Yates, C. Evans, L. Van Wassenhove, Z. F. Wu, S. Bridges, L. Bao, C. Fournier, S. Ashrafzadeh, M. J. Merrins, L. S. Satin, S. Schnell, C. F. Burant, and S. D. Merajver (2016). RhoC is a potent regulator of glutamine metabolism and N-acetylaspartate production in inflammatory breast cancer cells. *Journal of Biological Chemistry* 291,13715-13729. PMCID: PMC4919454
- S. K. Shoffner and S. Schnell (2016). Estimation of the lag time in a subsequent monomer addition model for fibril elongation. *Physical Chemistry Chemical Physics* 18, 21259-21268. (cover article)¹⁰ [Preprint *bioRxiv* DOI: 10.1101/034900]
- A. M. Freddo, S. K. Shoffner, Y. Shao, K. Taniguchi, A. S. Grosse, M. N. Guysinger, S. Wang, S. Rudraraju, B. Margolis, K. Garikipati, S. Schnell, D. L. Gumucio (2016). Coordination of signaling and tissue mechanics during morphogenesis of murine intestinal villi: a role for mitotic cell rounding. *Integrative Biology* 8, 918-928. (cover article)¹¹ PMCID: PMC5021607
- W. Stroberg, S. Schnell (2016). On the estimation errors of K_M and V from time-course experiments using the Michaelis-Menten equation. *Biophysical Chemistry* 219, 17–27. [Preprint *bioRxiv* DOI: 10.1101/068015]
- W. Stroberg, S. Schnell (2017). On the validity and errors of the pseudo-first-order kinetics in ligand-receptor binding. *Mathematical Biosciences* 287, 3-11. [Preprint *bioRxiv* DOI: 10.1101/051136]
- 74. A R. Udyavar, D. J. Wooten, M. Hoeksema, M. Bansal, A. Califano, L. Estrada, S. Schnell, J. Irish, P. P. Massion and V. Quaranta (2017). A systems-level approach to gene expression

¹⁰ Cover article (back inside) for Volume 18, Issue 31, 21st August 2016.

¹¹ Cover article (outside front) for Volume 8, Issue 9, 1st September 2016.

profiling reveals a hybrid phenotype in Small-Cell Lung Cancer. *Cancer Research* 77, 1063-1074. PMCID: PMC5532541

- 75. W. Stroberg, **S. Schnell** (2017). On the origin of non-membrane-bound organelles, and their physiological function. *Journal of Theoretical Biology* **434**, 42–49. PMCID: PMC5343595
- C. Adams, W. Stroberg, R. A. DeFazio, S. Schnell and S. M. Moenter (2018). Gonadotropinreleasing hormone (GnRH) neuron excitability is regulated by estradiol feedback and kisspeptin. *Journal of Neuroscience* 38, 1249-1263. PMCID: PMC5792479
- 77. M. L. Wynn, M. Egbert, N. Consul, J. Chang, Z.-F. Wu, S. D. Meravjer, S. Schnell (2018). Inferring intracellular signal transduction circuitry from molecular perturbation experiments. *Bulletin of Mathematical Biology* 80,1310-1344. [Preprint *bioRxiv* DOI: 10.1101/107730] PMCID: PMC5660674
- 78. J. C. Kasemeier-Kulesa, S. Schnell, T. Woolley, J. A. Spengler, J. A. Morrison, M. C. McKinney, L. A. Wolfe, and P. M. Kulesa (2018). Predicting Neuroblastoma using developmental signals and a logic-based model. *Biophysical Chemistry* 238, 30–38. PMCID: PMC6016551
- 79. N. Swainston, A. Baici, B. M. Bakker, A. Cornish-Bowden, P. F. Fitzpatrick, P. Halling, T. S. Leyh, C. O'Donovan, F. M. Raushel, U. Reschel, J. M. Rohwer, S. Schnell, D. Schomburg, K. F. Tipton, M.-D. Tsai, H. V. Westerhoff, U. Wittig, R. Wohlgemuth, and C. Kettner (2018). STRENDA DB: enabling the validation and sharing of enzyme kinetics data. *FEBS Journal* 285, 2193-2204. PMCID: PMC6005732
- S. Wang, C. Cebrian, S. Schnell and D. L. Gumucio (2018). Radial WNT5A-guided post-mitotic filopodial pathfinding is critical for midgut tube elongation. *Developmental Cell* 46, 173-188. PMCID: PMC6084452
- P. Halling, P. Fitzpatrick, F. M. Raushel, J. Rohwer, S. Schnell, U. Wittig, R. Wohlgemuth and C. Kettner (2018). An empirical analysis of enzyme function reporting for experimental reproducibility: missing/incomplete information in published papers. *Biophysical Chemistry* 242, 22-27. PMCID: PMC6258184
- J. Eilertsen, W. Stroberg and S. Schnell (2018). A theory of reactant-stationary kinetics for a mechanism of zymogen activation. *Biophysical Chemistry* 242, 34-44. [Preprint *ChemRxiv* DOI: 10.26434/chemrxiv.5631169] PMCID: PMC6532997
- J. Eilertsen and S. Schnell (2018). A kinetic analysis of coupled (or auxiliary) enzyme reactions. Bulletin of Mathematical Biology 80, 3154–3183. [Preprint ChemRxiv DOI: 10.26434/chemrxiv.5746065]
- J. Eilertsen, W. Stroberg and S. Schnell (2018). Phase-plane geometries in coupled enzyme assays. *Mathematical Biosciences* 306, 126-135. [Preprint *ChemRxiv* DOI: 10.26434/chemrxiv.5923786] PMCID: PMC6476317
- 85. W. Stroberg, H. Atkin, Y. Savir and S. Schnell (2018). How to design an optimal sensor network for the unfolded protein response. *Molecular Biology of the Cell* 29, 3052-3062. (cover article)¹² [Preprint *bioRxiv* DOI: 10.1101/396614] PMCID: PMC6333173
- 86. C. E. Adams, R. A. DeFazio, C. A. Christian, L. Milescu, S. Schnell, and S. M. Moenter (2019). Changes in both neuron intrinsic properties and neurotransmission are needed to drive the increase in GnRH neuron firing rate during estradiol positive feedback. *Journal of Neuroscience* 39, 2091-2101. (cover article)¹³ PMCID: PMC6507087
- S. Pitchiaya, M. D.A. Mourao, A. Jalihal, L. Xiao, X. Jiang, A. M. Chinnaiyan, S. Schnell and N. G. Walter (2019) Dynamic recruitment of single RNAs to processing bodies depends on RNA

¹² Cover article for Volume 29, Issue 30, 1st December 2018.

¹³ Cover article for Volume 39, Issue 11, 13th March 2019. Article was also featured in editorial "This Week in The Journal" 39 (11) 1965; DOI: <u>https://doi.org/10.1523/JNEUROSCI.twij.39.11.2019</u>

functionality. *Molecular Cell* **74**, 521-533.¹⁴ [Preprint *BioRxiv* DOI: 10.1101/375295] PMCID: PMC6499680

- M. S. DeNies, L. Kauer-Rosselli, S. Schnell, A. P. Liu. (2019) Clathrin heavy chain knockdown impacts CXCR4 signaling and post-translational modification. *Frontiers in Cell and Developmental Biology* 7, 77. PMCID: PMC6518350
- M. Vincent and S. Schnell (2019). Disorder Atlas: A web-based tool to characterize protein disorder at the proteome level. *Computational Biology & Chemistry* 83, 107090. [Preprint *bioRxiv* DOI: 10.1101/060699] PMCID: PMC7368971
- 90. M. J. Acevedo-Calado, S. L. Pietropaolo, M. P. Morran, S. Schnell, A. D. Vonberg, C. F. Verge, R. Gianani, D. J. Becker, S. Huang, C. J. Greenbaum, L. Yu, H. W. Davidson, A. W. Michels, S. S. Rich, and M. Pietropaolo (2019). Autoantibodies directed toward a novel IA-2 variant protein enhance prediction of type 1 diabetes. *Diabetes* 68, 1819-1829. (cover article)¹⁵ PMCID: PMC6702638
- 91. W. Stroberg, J. Eilertsen, **S. Schnell** (2019). Information processing by endoplasmic reticulum stress sensors. *Journal of the Royal Society Interface* **16**, 20190288. [Preprint *bioRxiv* DOI: 10.1101/617217] PMCID: PMC6769313
- J. Eilertsen, W. Stroberg and S. Schnell (2019). Characteristic, completion or matching timescales? An analysis of temporary boundaries in enzyme kinetics. *Journal of Theoretical Biology* 481, 28-43. [Preprint *arXiv* 1809.03961, q-bio.QM] PMCID: PMC6612542
- J. Eilertsen, S. Schnell (2020). The quasi-steady-state approximations revisited: Timescales, small parameters, singularities, and normal forms in enzyme kinetics. *Mathematical Biosciences* 325, 108339. [Preprint *arXiv* 1911.03445] PMCID: PMC7337988
- 94. J. Penix, R. A. DeFazio, E. A. Dulka, S. Schnell, and S. M. Moenter (2020) Firing patterns of gonadotropin-releasing hormone neurons are sculpted by their biologic state. *Royal Society Open Science* 7, 201040. PMCID: PMC7481724
- 95. M. S. DeNies, A. Smrcka, S. Schnell, A. P. Liu (2020). β-arrestin mediates communication between plasma membrane and intracellular GPCRs to regulate signaling. *Communications Biology* 3, 789. [Preprint *bioRxiv* DOI: 10.1101/2020.04.08.031542] PMCID: PMC7749148
- 96. J. Eilertsen, M. R. Roussel, S. Schnell, S. Walcher (2021). On the quasi-steady-state approximation in an open Michaelis-Menten reaction mechanism. *AIMS Mathematics* 6, 6781–6814. [Preprint *arXiv* 2101.05532, math.DS] PMCID: in progress.
- 97. W. Stroberg and **S. Schnell** (2021). Concentration sensing in crowded environments. *Biophysical Journal* **120**, 1718-1731. [Preprint bioRxiv DOI: 10.1101/2020.10.02.324129] PMCID: in progress.
- D. Felker, H. Zhang, Z. Bo, M. Lau, Y. Morishima, S. Schnell, Y. Osawa (2021). Mapping protein-protein interactions in homodimeric CYP102A1 by crosslinking and mass spectrometry. *Biophysical Chemistry* 274, 106590. (cover article)¹⁶ PMCID: PMC8137598.

Original peer-reviewed submitted for publication

- 99. F. Centonze, A. Besse, V. Reiterer, W. Stroberg, M. Zahoor, M. Giliberto, L. Büchler, P. Mendoza-Garcia, E. van Anken, C. Behrends, R. H. Palmer, F. H. Schjesvold, K. Tasken, S. Schnell, L. A. Munthe, C. Driessen, L. Besse, H. Farhan (2021). Targeting proteostasis in multiple myeloma through inhibition of LTK. *The EMBO Journal*, under review.
- 100. J. Basappa, M. ElAzzouny, D. Rolland, A. Sahasrabuddhe, K. Ma, G. Bazilevsky, S. Hwang, V. Mendoza-Reinoso, V. Basrur, K. Conlon, N. Bailey, J. Frederiksen, S. Schnell, Y. Zhou, D. Cookmeyer, J. Pawlicki, J. Riley, R. Faryabi, A. D. Amin, J. Schatz, K. Wellen, R. Marmorstein,

¹⁴ Article was featured under the <u>Molecular Cell Previews</u>: A.Chowdhury, M. Yu, and A. Lemke (2019). Phase separation comes of age: From phenomenology to single molecules. *Molecular Cell* **74**, 413-415.

¹⁵ Selected as cover article for September 2019.

¹⁶ Cover article for Volume 274, July 2021.

C. Burant, K.S.J. Elenitoba-Johnson, M. Lim (2021). Phosphotyrosine-mediated regulation of ACLY controls lipid metabolism and oncogenesis. *Blood Cancer Discovery*, under review. [Preprint *bioRxiv* DOI: 10.1101/2020.01.20.910752]

- C. Halupczok, J. Lohmann, P. Buchholz, M. Hucka, N. Swainston, C. Kettner, U. Wittig, F. T. Bergmann, M. Golebiewski, S. Schnell, J. Pleiss (2021). EnzymeML - an exchange format for biocatalysis and enzymology. *Scientific Data*, under review.
- 102. J. C. Kasemeier-Kulesa, J. A. Spengler, C. Stubblefield, J. A. Morrison, T. E. Woolley, S. Schnell, P. M. Kulesa (2021). The embryonic trunk neural crest microenvironment regulates the plasticity and invasion of human neuroblastoma via TrkB signaling. *Developmental Biology*, under review.
- 103. J. Eilertsen, S. Schnell (2021). Stochastic enzyme kinetics and the quasi-steady-state reductions: Application of the slow scale linear noise approximation à la Fenichel. *Journal of Mathematical Biology*, under review. [Preprint *arXiv* 2101.04814, physics.chem-ph]
- 104. J. Eilertsen, S. Schnell (2021). On the validity of the stochastic quasi-steady-state approximation in open enzyme catalyzed reactions: Timescale separation or singular perturbation? *Bulletin of Mathematical Biology*, under review. [Preprint arXiv 2103.10566, math.DS]
- 105. J. Eilertsen, M. A. Tyczynska, S. Schnell (2021). Hunting ε: How Fenichel theory aids in the design of experiments. SIAM Journal on Applied Dynamical Systems, under review. [Preprint ChemRxiv DOI: 10.26434/chemrxiv.8847596]
- 106. N. D. Urban, J. P. Cavataio, Y. Berry, B. Vang, A. Maddali, R. J. Sukpraphrute, S. Schnell, M. Truttmann (2021). Explaining inter-lab variance in C. elegans N2 lifespan: Making a case for standardized reporting to enhance reproducibility. *Experimental Gerontology*, under review.
- 107. J. Eilertsen, S. Schnell, S. Walcher (2021). Natural parameter conditions for singular perturbations of chemical reaction networks. *Journal of Mathematical Biology*, under review.

Peer-reviewed Reviews, Perspectives and Pedagogical Articles

- S. Schnell and P. K. Maini (2003). A century of enzyme kinetics. Reliability of the K_M and v_{max} Estimates. *Comments on Theoretical Biology* 8, 169-187.
- E. J. Crampin, S. Schnell and P. McSharry (2004). Mathematical and computational techniques to deduce complex biochemical reaction mechanisms. *Progress in Biophysics and Molecular Biology* 86, 77-112.
- 110. T. E. Turner, **S. Schnell** and K. Burrage (2004). Stochastic approaches for modelling in vivo reactions. *Computational Biology and Chemistry* **28**, 165-178.¹⁷
- P. Kulesa, S. Schnell, S. Rudloff, R. E. Baker and P. K. Maini (2007). From segment to somite: Segmentation to epithelialization analyzed within quantitative frameworks. *Developmental Dynamics* 236, 1392–1402. PMCID: PMC2030567
- 112. R. E. Baker, **S. Schnell** and P. K. Maini (2008). Mathematical models for somite formation. *Current Topics in Developmental Biology* **81**,183-203. PMCID: PMC2754719
- R. Grima and S. Schnell (2008). Modelling reaction kinetics inside cells. *Essays in Biochemistry* 45, 41-56. PMCID: PMC2737326
- 114. S. Schnell and R. Hancock (2008). The intranuclear environment. *Methods in Molecular Biology* 463, 3-22.
- 115. S. Schnell and Rod. A Herman (2009). Should digestion assays be used to estimate persistence of potential allergens in tests for safety of novel food proteins? *Clinical and Molecular Allergy* 7, 1. PMCID: PMC2632610
- 116. M. L. Wynn, S. Merajver and S. Schnell (2012). Unraveling the complex regulatory relationships between metabolism and signal transduction in cancer. *Advances in Experimental Medicine and Biology* 736, 179-189. PMCID: PMC3669218

¹⁷ This article is the most cited in this journal. On July 1st, 2009, it was selected by Thomson Reuters ScienceWatch as the most cited article in the field of computer science (computational biology) and stochastic approaches.

- M. L. Wynn, N. Consul, S. Merajver and S. Schnell (2012). Logic-based models in systems biology: a predictive and parameter-free network analysis method. *Integrative Biology* 4, 1323-1337. (cover article)¹⁸ PMCID: PMC3612358
- 118. C. I. Sandefur, M. Mincheva and S. Schnell (2013). Network representations and methods for the analysis of chemical and biochemical pathways. *Molecular BioSystems* 9, 2189-2200. PMCID: PMC3755892
- 119. S. Papagerakis, L. Zheng, S. Schnell, M. A. Sartor, W. Marder, E. Somers, L. Ehardt, B. McAlpin, D. Kim, A. Imad and P. Papagerakis (2014). The circadian clock in oral health and diseases. *Journal of Dental Research* 93, 27-35. PMCID: PMC3865791
- 120. S. Schnell (2014). Validity of the Michaelis-Menten equation Steady-state, or reactant stationary assumption: that is the question. *FEBS Journal* 281, 464-472.
- 121. R. Grima, N. G. Walter and S. Schnell (2014). Single molecule enzymology à la Michaelis-Menten. *FEBS Journal* 281, 518-530.
- 122. A. J. Carulli, L. C. Samuelson and S. Schnell (2014). Unraveling intestinal stem cell behavior with models of crypt dynamics. *Integrative Biology* 6, 243-257. (cover article)¹⁹ PMCID: PMC4007491
- M. Mourão, J. B. Hakim and S. Schnell (2014). Connecting the dots: The effects of macromolecular crowding on cell physiology. *Biophysical Journal* 107, 2761-2766. PMCID: PMC4269789
- 124. A. Khadra and S. Schnell (2015). Development, growth and maintenance of β-cell mass: Models are also part of the story. *Molecular Aspects of Medicine* 42, 78-90. (cover article)²⁰ PMCID: PMC4404203
- 125. S. Schnell (2015). Ten Simple Rules for a Computational Biologist's Laboratory Notebook. PLoS Computational Biology 11(9): e1004385. (pedagogical article) PMCID: PMC4565690
- 126. S. K. Shoffner and S. Schnell (2017). Approaches for the estimation of timescales in nonlinear dynamical systems: Timescale separation in enzyme kinetics as a case study. *Mathematical Biosciences* 287, 122-129.
- 127. F. Midani, M. L. Wynn, S. Schnell (2017). The importance of correcting for the natural abundance of stable isotopes. *Analytical Biochemistry* 520, 27–43. PMCID: PMC5343595
- M. L. Conte, J. Liu, S. Schnell and M. B. Omary (2017). Globalization and changing trends of biomedical research output. *Journal of Clinical Investigation - Insight* 2, e9520. (perspective) PMCID: PMC5470885
- 129. W. Stroberg and **S. Schnell** (2018). Do cellular condensates accelerate biochemical reactions? Lessons from microdroplet chemistry. *Biophysical Journal* **115**, 3-8. PMCID: PMC6035290
- S. Schnell (2018). "Reproducible" research in mathematical sciences requires changes in our peer review culture and modernization of our current publication approach. *Bulletin of Mathematical Biology* 80, 3095–3105. PMCID: PMC6240027
- M. Vincent, V. N. Uversky and S. Schnell (2019). On the need to develop guidelines for characterizing and reporting intrinsic disorder in proteins. *Proteomics* 19, 1800415. (cover article)²¹ PMCID: PMC6571172
- 132. M. B. Omary, Y. M. Shah, S. Schnell, S. Subramanian, M. S. Swanson, M X. O'Riordan (2019). Enhancing career development of postdoctoral trainees: Act locally and beyond. *Journal of Physiology* 597, 2317-2322. (cover article)²² PMCID: PMC6487921

¹⁸ Cover article (front inside) for Volume 4, Issue 11, November 2012.

¹⁹ Cover article (back cover) for Volume 6, Issue 3, March 2014.

²⁰ Cover article for Volume 42, April 2015.

²¹ Cover article (front cover) for Volume 19, Issue 6, 20 March 2019.

²² Cover article (front cover) for Volume 597, Issue 9, 1 May 2019.

- 133. M. S. DeNies, Allen P. Liu, S. Schnell (2020). Are the biomedical sciences ready for synthetic biology? *Biomolecular Concepts* 11, 23-31.
- 134. M. L. Conte, S. Schnell, A. S. Ettinger, M. B. Omary (2020). Trends in NIH-supported career development funding: implications for institutions, trainees, and the future research workforce. *Journal of Clinical Investigation - Insight* 5, e142817. (perspective)
- 135. J. Cavataio and S. Schnell (2021). Interpreting SARS-CoV-2 fatality rate estimates: A case for introducing standardized reporting to improve communication. *Mathematical Biosciences* 333, 108545. (review) [Preprint SSRN: <u>https://www.ssrn.com/abstract=3695733</u>] PMCID: PMC7810031
- 136. M. S. DeNies, Allen P. Liu, S. Schnell (2021). Assumptions of biological measurements: A case study of how we quantify and interpret cell-signaling results. *Acta Biotheoretica*, under review. [Preprint: *Authorea*, DOI: 10.22541/au.161144035.53972444/v1]
- 137. W. Stroberg and S. Schnell (2021). How crowding in the cell affects enzyme reaction rates. *Annual Reviews of Biophysics*, under review.

Commentaries, Editorials, and Outreach

- S. Schnell and J. Hein (2003). Computational Cell Biology. *Briefings in Bioinformatics* 4, 87-89. (book review)
- 139. S. Schnell and P. K. Maini (2003). Bulletin of Mathematical Biology Some facts and figures. *Mathematical Biology Newsletter* 16, 9-12. (commentary)
- 140. S. Schnell (2004). Parametric sensitivity analysis in chemical systems. *Bulletin of Mathematical Biology* 66, 393-395. (book review)
- 141. P. K. Maini, S. Schnell and S. Jolliffe (2004). Bulletin of Mathematical Biology Facts, figures and comparisons. *Bulletin of Mathematical Biology* 66, 595-603. (editorial)
- 142. E. J. Crampin and S. Schnell (2004). New approaches to modelling and analysis of biochemical reactions, pathways and networks. *Progress in Biophysics and Molecular Biology* 86, 1-4. (editorial)
- 143. S. Schnell (2006). Computational modeling of genetic and biochemical networks. *Briefings in Bioinformatics* 7, 204-206. (book review)
- 144. S. Schnell (2006). Unravelling the function and kinetics of biochemical networks. *IEE Proceedings Systems Biology* 153, 139. (editorial)
- S. Schnell, R. Grima and P. K. Maini (2007). Multiscale modeling in biology. *American Scientist* 95, 134-142. (cover article)²³
- 146. S. Schnell, P. K. Maini, S. A. Newman, T. J. Newman (2008). Multiscale modeling of developmental systems: Introduction. *Current Topics in Developmental Biology* 81: xvii-xxv.
- 147. R. E. Baker and **S. Schnell** (2009). How can mathematics help us explore vertebrate segmentation? *HFSP Journal* **3**, 1-5.²⁴ (commentary) PMCID: PMC2689611
- 148. O. Wolkenhauer, C. Auffray, S. Baltrusch, N. Blüthgen, H. Byrne, M. Cascante, A. Ciliberto, T. Dale, D. Drasdo, D. Fell, J. E. Ferrell, Jr, D. Gallahan, R. Gatenby, U. Günther, B. D. Harms, H. Herzel, C. Junghanss, M. Kunz, I. van Leeuwen, P. Lenormand, F. Levi, M. Linnebacher, J. Lowengrub, P. K. Maini, F. Marcus, A. Malik, K. Rateitschak, O. Sansom, R. Schäfer; K. Schürrle, C. Sers, S. Schnell, D. Shibata, J. Tyson, J. Vera, M. White, B. Zhivotovsky, and R. Jaster (2010). Systems biologists seeks fuller integration of systems biology approaches in new cancer research programs. *Cancer Research* 70, 12-13. (meeting report) PMCID: PMC2802734
- 149. **S. Schnell** (2012). The art of mathematical biology: A foreword for the launch of BIOMATH. *Biomath* **1**, 1210115. (editorial)

²³ This paper is the cover article for the March-April issue. It has also been published in Spanish "Modelización en biología a través de escalas múltiples" *Investigación y Ciencia*, Mayo 2007, Número 268, pp. 60-69, and German at *Spektrum der Wissenschaft*.

²⁴ Paper selected for the March 1, 2009 issue of Virtual Journal of Biological Physics Research by an expert panel

- 150. S. Schnell and M. Pietropaolo (2013). Designing nanoparticle treatment of autoimmunity with quantitative biology. *Immunology & Cell Biology* **91**, 333-334. (commentary)
- 151. P. Arvan, E. Bernal-Mizrachi, M. Liu, M. Pietropaolo, L. Satin, S. Schnell and S. A. Soleimanpour (2015). Molecular aspects of pancreatic beta cell failure and diabetes. *Molecular Aspects of Medicine* 42, 1-2. (editorial)
- 152. L. Satin and S. Schnell (2015). Evidence for residual and partly reparable insulin secretory function and maintained beta cell gene expression in islets from patients with Type 1 diabetes. *Diabetes* 64, 2335-2337. (commentary) PMCID: PMC4477347
- 153. P. K. Maini, R. E. Baker and S. Schnell (2015). Rethinking models of pattern formation in somitogenesis. *Cell Systems* 1, 248-249. (commentary)
- 154. N. Swainston, and C. Kettner on behalf of STREDA Commission [A. Baici, B. M. Bakker, A. Cornish-Bowden, P. F. Fitzpatrick, P. Halling, T. S. Leyh, C. O'Donovan, F. M. Raushel, J. M. Rohwer, S. Schnell, D. Schomburg, K. F. Tipton, M.-D. Tsai, U. Wittig, R. Wohlgemuth] (2018). A repository for quality-assured data on enzyme activity. *Nature* 556, 309. (correspondence)
- 155. S. Schnell (2019). Have we come to the end of theoretical and mathematical biology? *Journal of Theoretical Biology* 481, 1-2. (editorial)

Chapters in Books

- 156. S. Schnell (1996). Índices de los volúmenes I, II, III y IV de Los Peces Marinos de Venezuela. In: Los Peces Marinos de Venezuela, Volume IV (F. Cervigón, author). Caracas: Fundación Científica Los Roques.
- 157. S. Schnell and C. Mendoza (1996). A quantitative description of the competitive polymerase chain reaction. In: *Simulation Modelling in Bioengineering*, (M. Cerrolaza, D. Jugo and C. A. Brebbia, editors). Southampton: Computational Mechanics Publications, Wessex Institute of Technology. DOI: 10.2495/BSIM960021
- 158. S. Schnell and C. Mendoza (1996). Consideraciones Teóricas de la Reacción en Cadena de la Polimerasa (PCR). In: *Técnicas analíticas no convencionales para un desarrollo sustentable*, Colección Simposio (L. Sajo Bohus & J. Liendo, editors). Valle de Sartenejas: Equinoccio.
- 159. S. Schnell, K. J. Painter, P. K. Maini and H. G. Othmer (2000). Spatiotemporal pattern formation in early development: a review of primitive streak formation and somitogenesis. In: *Mathematical Models for Biological Pattern Formation* (H. G. Othmer and P. K. Maini, editors). New York: Springer-Verlag. pp. 11-37. DOI: 10.1007/978-1-4613-0133-2_2
- 160. C. I. Sandefur and S. Schnell (2011). Effects of protein control machinery on protein homeostasis. In: Understanding the Dynamics of Biological Systems: Lessons Learned from Integrative Systems Biology (W. Dubitzky, J. Southgate and H. Fuss, editors). New York: Springer-Verlag. pp. 1-17. DOI: 10.1007/978-1-4419-7964-3_1
- 161. M. Whidden, A. Ho and S. Schnell (2014). A two-step kinetic model of insulin aggregation with a competitive inhibitor. In: *BIOMAT 2013: International Symposium on Mathematical and Computational Biology, Toronto, Canada, November, 04-08, 2013* (R. P Mondaini, editor). Singapore: World Scientific Publishing. pp. 107-120. DOI: 10.1142/9789814602228 0006
- 154. S. Schnell (2020) Knitting Proteins. In: *The Art of Theoretical Biology* (Franziska Matthäus, Sebastian Matthäus, Sarah Harris, Thomas Hillen, editors). Springer, pp 54-55. DOI: 10.1007/978-3-030-33471-0_27

Books

- S. Schnell, P. K. Maini, S. Newman, T. J. Newman (editors) (2008). *Multiscale modeling of developmental systems*. Series: Current Topics in Developmental Biology. Volume 81. New York: Academic Press. (ISBN 978 0 12 374283 7)
- 2. D. Gumucio, C. Layden, T. Carulli, C. Myers, S. Schnell (2021). Bioartography. Springer Nature Switzerland (*under preparation*).

Nonacademic publications

- 1. **S. Schnell** (2009). *The use of time*. Masa Editorial. ISBN 978 1 45 152090 3 Paperback. ISBN 978 1 45 819113 7 E-book
- 2. **S. Schnell** (2010). *Escritura, muerte y opresión*. Masa Editorial. ISBN 978 1 46 098200 6 Paperback. ISBN 978-1 45 813460 8 E-book

News and Views

Newspapers articles and press releases

- 1. Vivimos fuera de nosotros mismos (*interview*) Publisher in the column '(des)Ocupado Lector', Verbigracia (Ideas, Artes, Letras), No. 17, p. 4, 1997. *El Universal*, 3 de Agosto. (**national newspaper**)
- 2. S. Schnell (2003). Los peligros de la clonación. *El Nacional*, 23 de Abril, A-9. (national newspaper)
- 3. S. Schnell, C. Mendoza (2004). Matemáticas electorales. *El Nacional*, 4 de Abril, A-7. (national newspaper)
- Venezolano desentraña reloj biológico que da origen a la columna vertebral. *Interview* feature on the front page and published in *El Nacional*, 21 de Noviembre, A-1, B-20, 2005.²⁵ (national newspaper)
- 5. Experto opina que reloj biológico controla desarrollo de la columna. *Interview* published by *Agencia Bolivariana de Noticias*, 24 November 2005. (national news agency)
- 6. Theoretical biologists, other experts to present at biocomplexity workshop. Media item published in: *News & Media*, Indiana University School of Informatics Press Office, 27 April 2006; *Press release* published in Health Informatics News, 27 April 2006, *News release* on laboratorytalk.com, 1 May 2006.
- 7. Class action: Faculty feted for teaching talents. Media item published in: *News & Media*, Indiana University School of Informatics Press Office, 1 May 2006; *Article* published in The Herald-Times, 6 May 2006, A3 (local newspaper); *New release* on teaching award published in The Indianapolis Star, 22 May 2006, Business (ID: ind99006123). (state newspaper).
- Mathematical Models add more options for life sciences. Media item published in: News Release, Indiana University Office of Media Relations, 8 Feb 2007; News Brief, HCP wire, 8 Feb 2007; News Release on biohealthmatics.com, 12 Feb, 2007; News Release on laboratorytalk.com, 14 Feb 2007.
- 9. NIH to give IU \$2.7 million to explain how embryos take their shape. Media item published in: *News Release*, Indiana University Office of Media Relations, 15 Oct 2008
- 10. Thomson Reuters Science Watch, Moving Frontiers in the Field of Computer Science, July 1st, 2009. Highly cited article: "Stochastic Approaches for Modelling in vivo reactions" http://sciencewatch.com/dr/fmf/2009/09julfmf/09julfmfSchnell/ (international news agency)
- 11. U-M researchers examine new treatment for type 1 diabetes. Media item published in: UMHS News Room, University of Michigan, 15 Sept 2010.
- 12. Grant will allow computer programs to study causes of juvenile diabetes. Media item published in: Brehm Center News, University of Michigan, January 2011.
- Places & Spaces: Mapping Science. Exhibit at UM Library. Media item published in Ann Arbor.com and Heritage.com: <u>http://www.heritage.com/articles/2011/02/13/life/doc4d589928d16bc093479917.txt</u>. February 13, 2011

²⁵ Four radio interviews occurred as a result of this newspaper interview

- 14. University of Michigan study shows promise for developing protein therapies for disease prevention. Media item published in: UMHS News Room, University of Michigan, 28 April 2011. Reprinted in 1,379 media outlets.
- 15. Model shows promise to develop therapies for protein folding diseases, 28 April 2011. Pakistan News (<u>http://www.onepakistan.com/news/health/98364-model-shows-promise-to-develop-therapies-for-protein-folding-diseases.html</u>). Reprinted in 624 media outlets.
- 16. Therapies for Protein Folding Diseases Closer to Reality, 29 April 2011. India News.
- 17. Restauração do funcionamento de proteínas pode ser chave para cura de doenças, 29 April 2011, Isaude News, Brazil. <u>http://www.sjtresidencia.com.br/invivo/?p=17854</u>, <u>http://www.isaude.net/pt-BR/noticia/16943/ciencia-e-tecnologia/restauracao-do-funcionamento-de-proteinas-pode-ser-chave-para-cura-de-doencas</u>
- 18. Metabolic fingerprinting can reveal evolution of species, Michigan Health System Headlines, 6 Feb 2013, <u>http://umhsheadlines.org/06/umhs-research-cover-story-metabolic-fingerprinting-can-reveal-evolution-of-speciesutm_sourcehshutm_mediumemailutm_campaignumhs-research-cover-story-metabolic-fingerprinting-can-reveal-evolution/</u>
- Creating more realistic models of reactions inside the cell, Michigan Health System Headlines, 14 Feb, 2014, <u>http://umhsheadlines.org/14/creating-more-realistic-models-of-reactions-inside-the-cell/</u>
- 20. The promise of novel integrative approaches for intestinal stem cell research, Michigan Health System Headlines, 27 Feb, 2014, <u>http://umhsheadlines.org/27/the-promise-of-novel-integrative-approaches-for-intestinal-stem-cell-research/</u>
- 21. Professor Santiago Schnell FRSC, 175 Faces of Chemistry, Royal Society of Chemistry, 4 August, 2014, <u>http://www.rsc.org/diversity/175-faces/all-faces/professor-santiago-schnell-frsc</u>
- 22. Member News: Schnell to lead Society for Mathematical Biology, ASBMB Today, November 2014, <u>http://www.asbmb.org/asbmbtoday/201411/ASBMBMemberUpdate/</u>
- 23. Members in the News: Santiago Schnell elected President of the Society for Mathematical Biology, Biophysical Society Newsletter, December 2014, page 13, http://biophysics.cld.bz/Biophysical-Society-Newsletter-December-2014#12
- 24. Notices of the AMS: Lathisms: Latin@s and Hispanics in Mathematical Sciences, October 2016, Volume 63, Number 9, pages 1021-2014. Dr. Schnell was interview and cover featured with other mathematical scientists. <u>http://www.ams.org/publications/journals/notices/201609/rnoti-p1019.pdf</u>

http://www.ams.org/publications/journals/notices/201609/noti-o-16-cov-web.pdf

- 25. U-M scientists, engineers elected to AAAS, November 21, 2016. Santiago Schnell is among 391 newly elected fellows of the American Association for the Advancement of Science. <u>http://ns.umich.edu/new/releases/24367-u-m-scientists-engineers-elected-to-aaas</u> <u>https://record.umich.edu/articles/nine-scientists-and-engineers-u-m-elected-aaas</u>
- 26. America's still first in science -- but China rose fast as funding stalled in U.S. and other countries, study finds, June 15, 2017. <u>http://www.uofmhealth.org/news/archive/201706/america%E2%80%99s-still-first-science-china-rose-fast-funding</u>

Reprinted in numerous media outlets, and led to a radio interview.

- 27. The University Record, Accolades, Santiago Schnell was elected as a Foreign Corresponding Fellow of the Latin American Academy of Sciences. <u>https://record.umich.edu/articles/accolades-79</u>
- 28. How Do Cells Under Stress Clean Up a Potentially Dangerous Mess? Researchers develop a mathematical model of a cell's response to disease-causing unfolded proteins., Michigan Medicine Health Lab, December 5, 2018. https://labblog.uofmhealth.org/lab-report/how-do-cells-under-stress-clean-up-a-potentially-dangerous-mess

- 29. Witnessing the dance of RNAs around droplets of cellular degradation machinery. Michigan News, April 2, 2019. <u>https://news.umich.edu/witnessing-the-dance-of-rnas-around-droplets-of-cellular-degradation-machinery/</u>
- 30. Does Strong NIH Research Support Mean Strong Career Development Funding? Michigan Health Lab News, September 14, 2020. <u>https://labblog.uofmhealth.org/med-u/does-strong-nih-research-support-mean-strong-career-development-funding</u>